摘要
为解决病态数据对损伤识别与状态评估的不利影响,提出基于数据关联度的监测数据预测方法。通过BP神经网络建立多通道数据间的关联度模型,以数据间的关联度对出现病态数据通道的数据进行预测和修正,并通过实测数据进行验证。研究表明考虑多通道数据间关联度的预测值比单通道的预测值具有更高精度,能够满足工程应用要求。
In order to solve the adverse influence caused by ill-conditioned data on damage identification and condition assessment,the monitoring data prediction method based on data correlation was proposed.The correlation degree between multi-channels data was established by BP neural network,and the ill-conditioned data channel was predicted and corrected by the correlation degree between the data,which was verified by the measured data.The results indicate that the prediction value achieved using BP neural network prediction method considering the correlation degree between multi-channel data has higher accuracy than the prediction value of single channel,which can meet the engineering requirement.
作者
周岳
朱毅
乔升访
胡贺松
唐孟雄
李鹏
李高堂
ZHOU Yue;ZHU Yi;QIAO Sheng-fang;HU He-song;TANG Meng-xiong;LI Peng;LI Gao-tang(Zhuhai Da Hengqin Co. Ltd, Zhuhai 519000, China;Guangzhou Institute of Building Science, Guangzhou 510440, China;China Railway 20th Bureau Group Co., Ltd., Xi'an 710000, China.)
出处
《科学技术与工程》
北大核心
2020年第22期9128-9132,共5页
Science Technology and Engineering
基金
中国博士后基金(2019M662917,2019M652899)
国家自然科学基金(51608139,51678171)
珠海大横琴股份有限公司和中铁二十局集团有限公司资助项目(SG01-2018-458B)
广州市建筑集团有限公司科技计划([2019]-KJ023)。
关键词
数据预测
智能监测
多通道数据
神经网络
关联度
data prediction
intelligent monitoring
multichannel data
neural network
association degree