期刊文献+

基于数据挖掘的淘宝精准营销策略研究 被引量:3

Research on Taobao Precision Marketing Strategy Based on Data Mining
下载PDF
导出
摘要 针对淘宝平台存在的用户定位模糊,无差别且低效率的营销问题,基于海量的淘宝用户行为特征数据,综合利用Weka、R数据挖掘软件,运用K-Means聚类算法对淘宝用户进行精准动态画像,构建用户标签化模型.同时利用Stata数据分析软件,建立二元Logistic回归模型预测淘宝特定用户的支付行为,进而建立支付行为预测体系.从精准营销的角度,就淘宝的营销方案设计提出合理化建议. Aiming at the problem of fuzzy user positioning,indiscriminate and inefficient marketing on the Taobao platform,based on massive Taobao user behavior characteristic data,using Weka and R data mining software,and using K-Means clustering algorithm to make accurate dynamic portraits of Taobao users,a user labeling model is built,and using Stata data analysis software,a binary logistic regression model is established to predict the payment behavior of specific users on Taobao,and then a payment behavior prediction system is built.From the perspective of precision marketing,the reasonable suggestions for the design of Taobao’s marketing plan are put foward.
作者 唐慧祥 常啸 宋来敏 Tang Huixiang;Chang Xiao;Song Laimin(Anhui University of Finance and Economics)
机构地区 安徽财经大学
出处 《哈尔滨师范大学自然科学学报》 CAS 2020年第3期19-24,共6页 Natural Science Journal of Harbin Normal University
基金 安徽省高校自然科学重点项目(KJ2020A0018) 国家级大学生创新创业训练计划项目(201910378214) 安徽高校人文社会科学研究重点项目《基于粗糙集理论的安徽承接产业转移环境承载力研究》(SK2017A0848)。
关键词 数据挖掘 K-MEANS聚类算法 用户画像 二元LOGISTIC回归 精准营销 Data mining K-means clustering algorithm User portrait Binary logistic regression Precision marketing
  • 相关文献

参考文献6

二级参考文献34

  • 1王刚,黄丽华,张成洪,夏洁.数据挖掘分类算法研究综述[J].科技导报,2006,24(12):73-76. 被引量:10
  • 2中国互联网络信息中心.第33次中国互联网络发展状况统计报告[EB/OL].2014-03-05.[2014-07-17]http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/201403/t20140305 _46240.htm.
  • 3A Borchers, J Herlocker, J Konstan, et al. Ganging up on information overload[J]. Computer, 1998, 31 (4) : 106-108.
  • 4Tmall Recommendation Prize 2014 & TianChi Open Data Project[Z].
  • 5Resinick P, Varian H R.Recommender systems[J].Communications oftheACM, 1997, 40 (3) : 56-58.
  • 6Sarwar, B, Karypis, G, Konstan, J, et al. Item-based Collaborative Filtering Recommendation Algorithms[Z].In Proceedings of the Tenth International World Wide Web Conference on World Wide Web, 2001.
  • 7Karypis, G.Evaluation of Item-based top-n Recommendation Algorithms[Z].In Proceedings of the Tenth International Conference onlnformation and Knowledge Management (CIKM), 2001.
  • 8Demiriz A.Enhancing Product Recommender Systems on Sparse Binary Data[EB/OL].http : //www.rpi.edu/~demira/researeh.htm, 2003.
  • 9Anderson Chris.The Long Tail : Why the Future of Business is Selling Less of More[Z]. New York, NY: Hyperion. ISBN 1-4013- 0237-8.
  • 10Wolf J., Aggarwal C., Wu K-L., et al. Horting Hatches an Egg : A New Graph-Theoretic Approach to Collaborative Filtering[Z]. In Proceedings of ACM SIGMOD Intemational Conference on Knowledge Discovery & Data Mining, 1999.

共引文献26

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部