期刊文献+

基于数据场与3-D图形表示的DNA序列分析

DNA Sequence Analysis Based on Data Field and 3-D Graphical Representation
下载PDF
导出
摘要 该文提出了DNA序列的一种3-D图形表示,并且针对此图形表示的非退化性给出了数学证明。然后计算所提3维图形表示的L/L矩阵的ALE指标,并给出了所提3维图形的图半径,从而对DNA序列进行数值刻画。结合物理学中重力场势函数的思想,构造了向量形式的数据对象间的势函数,进而以K-近邻算法为分类器,对208个RIG-I基因进行了分类识别。实验结果证明了该文所提的分类办法是有效的。 This paper presents a 3-D graphical representation of the DNA sequence,and gives a mathematical proof for the non-degenerate nature of the graphical representation.Then calculate the ALE index of the L/L matrix represented by the proposed 3-dimensional graph,and give the graph radius of the proposed 3-dimensional graph,thereby numerically characterizing the DNA sequence.Combining the idea of the potential function of gravity field in physics,the potential function between data objects in the form of vectors is constructed,and then 208 RIG-I genes are classified and identified using the K-nearest neighbor algorithm as the classifier.The experimental results prove that the classification method proposed in this paper is effective.
作者 郑卓 赵佳玲 李春 ZHENG Zhuo;ZHAO Jialing;LI Chun(School of Mathematics and Physics,Bohai University,Jinzhou,Liaoning Province,121000 China;College of Mathematics and Statistics,Hainan Normal University,Haikou,Hainan Province,570000 China)
出处 《科技资讯》 2020年第21期27-29,共3页 Science & Technology Information
关键词 图形表示 数值刻画 数据场 RIG-I基因 序列分析 Graphical representation Numerical characterization Data field RIG-i gene Sequence analysis
  • 相关文献

参考文献3

二级参考文献23

  • 1淦文燕,李德毅,王建民.一种基于数据场的层次聚类方法[J].电子学报,2006,34(2):258-262. 被引量:83
  • 2唐杰,梁邦勇,李涓子,王克宏.语义Web中的本体自动映射[J].计算机学报,2006,29(11):1956-1976. 被引量:98
  • 3HANJia-wei,Micheline Kanber著.数据挖掘概念与技术[M].北京:机械工业出版社,2007
  • 4Cohen W, Ravikumar P, Fienberg S. A comparison of string distance metrics for name-matching tasks//Proceedings of the IJCAI Workshop on Information Integration on the Web (IIWeb). Aeapulco, Mexico, 2003: 73-78.
  • 5Budanitsky A, Hirst G. Evaluating WordNet based measures of lexical semantic relatedness. Computational Linguistics, 2006, 32(1): 13-47.
  • 6Do H-H, Rahm E. COMA A system for flexible combination of schema matching approaches//Proceedings of the 28th International Conference on Very Large Data Bases(VLDB). Hong Kong, China, 2002:610- 621.
  • 7Melnik S, Garcia-Molina H, Rahm E. Similarity flooding: A versatile graph matching algorithm and its application to schema Matching//Proceedings of the 18th International Conference of Data Engineering (ICDE). San Jose, California, 2002. 117-128.
  • 8Isaac A, Meij L, Schlobach S, Wang S. An empirical study of instance based ontology matching//Proceedings of the 6th International Semantic Web Conference and the 2nd Asian Semantic Web Conference (ISWC/ASWC). Busan, Korea, 2007, 253 -266.
  • 9Wang S, Englebienne G, Schlobach S. Learning concept mappings from instance similarity//Proceedings of the 7th International Semantic Web Conference (ISWC). Karlsruhe, Germany, 2008:339- 355.
  • 10Udrea O, Getoor L, Miller R. Leveraging data and structure in ontology integration//Proceedings of the 26th International Conference on Management of Data (SIGMOD). Beijing, China, 2007:449-460.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部