摘要
针对强背景噪声环境下滚动轴承故障特征难以提取的问题,提出一种基于最大相关峭度反褶积(MCKD)与傅里叶分解方法(FDM)相结合的滚动轴承故障诊断方法。首先采用MCKD对振动信号去噪、提取与故障相关的冲击成分;其次,采用FDM对去噪信号进行分解,得到若干个瞬时频率具有物理意义的傅里叶固有频带函数和一个残余分量之和;第三,依据各个模态与去噪信号的相关性提取包含故障信息的最优模态分量,并对它们进行重构;最后,计算重构信号的包络谱,从谱图中读取故障信息。将所提故障诊断方法应用于滚动轴承故障仿真和实验数据分析,并通过与现有方法进行对比,结果表明,该方法优于所对比的方法。
Aiming at the problem that it is difficult to extract fault features of rolling bearing form strong background noise,a fault diagnosis method based on maximum correlation kurtosis deconvolution(MCKD)and Fourier decomposition method(FDM)is proposed.First,MCKD is used to denoise the vibration signal and extract the impact component related with failure.Second,the denoising signal is decomposed by FDM,and several Fourier intrinsic band functions(FIBFs)with physical significance and one residual component are obtained.Third,the correlation between each FIBF and denoising signal is computed to select the optimal components that contain main fault information for reconstruction.Finally,the envelope spectrum of the reconstructed signal is calculated and the fault information is read from envelope spectrum for diagnostics.The proposed fault diagnosis method is applied to simulation and experimental data analysis of faulty rolling bearing by comparing with the existing methods.The analysis results show that the proposed method is superior to the existing methods of comparison.
作者
黄斯琪
郑近德
潘海洋
童靳于
刘庆运
Huang Siqi;Zheng Jinde;Pan Haiyang;Tong Jinyu;Liu Qingyun(School of Mechanical Engineering,Anhui University of Technology,Anhui Maanshan 243032,China)
出处
《机械科学与技术》
CSCD
北大核心
2020年第8期1163-1170,共8页
Mechanical Science and Technology for Aerospace Engineering
基金
国家重点研发计划项目(2017YFC0805100)
国家自然科学基金项目(51505002)
安徽省高校自然科学研究重点项目(KJ2019A0053,KJ2019A092)资助。
关键词
滚动轴承
傅里叶分解方法
最大相关峭度反褶积
故障诊断
rolling bearing
fourier decomposition method
maximum correlation kurtosis deconvolution
fault diagnosis