期刊文献+

空时分数阶Burgers方程的新精确解

New Exact Solution for the Space-time fractional Burgers Equation
下载PDF
导出
摘要 借助修正的Riemann-Liouville分数阶导数和分数阶复变换,基于Riccati函数展开法,得到空时分数阶Burgers方程的新精确解,其中包括孤立波解、周期波解、有理函数解. With the aid of modified Riemann-Liouville derivative and the fractional complex transformation,based on the Riccati expansion method,the method is applied to solve space-time fractional Burgers equation.The obtained solutions include solitary wave solutions,periodic wave solutions and rational solutions.
作者 黄春 HUANG Chun(Faculty of Education,Sichuan Vocational and Technical College,Suining 629000,China)
出处 《四川职业技术学院学报》 2020年第4期136-139,共4页 Journal of Sichuan Vocational and Technical College
基金 四川省教育厅科研项目(18ZB0537)。
关键词 Riemann-Liouville导数 Riccati函数展开法 精确解 Riemann-Liouville derivative Riccati expansion method a exact solutions
  • 相关文献

参考文献6

二级参考文献30

  • 1R. Baglcy and P. Torvik, J. Rheol. 27 (1983) 201.
  • 2A. Carpinteri and F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics, Springer, Wien(1997).
  • 3A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V, Amsterdam (2006).
  • 4K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and, Fractional Differential Equations, Wiley, New York (1993).
  • 5K.B. Oldham and F. Spanier, The Fractional Calculus, Academic Press, New York (1974).
  • 6I. Podlubny, Fractional Differential Equations, Academic Press, San Diego (1999).
  • 7G.M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford (2005).
  • 8G. Wu and E.W.M. Lee, Phys. Lett. A 374 (2010) 2506.
  • 9M.M. Meerschaert, H.P. Scheffler, and C. Tadjeran, J. Comput. Phys. 211 (2006) 249.
  • 10S. Momani and Z. Odibat, Appl. Math. Comput. 177(2006)488.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部