期刊文献+

低温液化天然气膨胀机非定常数值模拟 被引量:1

Unsteady numerical simulation of cryogenic LNG expander
原文传递
导出
摘要 为了研究低温膨胀机的压力脉动特性,采用数值模拟方法对膨胀机水力模型进行数值模拟。首先通过定常数值模拟得到膨胀机的外特性,并将模拟结果与试验结果进行对比,验证了模拟结果的精确度,然后以定常数值模拟结果为基础进行非定常数值模拟,得到导叶与转轮内不同监测点的时域图,并通过快速傅里叶变换得到监测点的频域图。结果表明:转轮内监测点主频与导叶叶片数对流体的影响一致,导叶内监测点主频与转轮叶片数对流体的影响一致。监测点主频的幅值与监测点的位置相关,当监测点靠近导叶与转轮之间的无叶区时,幅值更大;与无叶区距离越远,幅值越小,受到导叶与转轮之间动静干涉的影响越小。研究结果可为低温膨胀机的设计提供参考。(图9,表1,参21) To study the pressure pulsation characteristics of the cryogenic expander,the numerical simulation was performed on the expander hydraulic model by the numerical simulation method.Firstly,external characteristics of expander were obtained by steady numerical simulation.Simulation results were compared with test results,verifying the accuracy of simulation results.The unsteady numerical simulation was performed based on the results of steady numerical simulation.The time-domain plot at different monitoring points of the guide vane and the runner was drawn,and the frequency-domain plot at monitoring points was obtained through fast Fourier transform.The results show that the effect of dominant frequency at the monitoring point of the runner on fluid is as consistent as that of the number of the guide vanes and the effect of dominant frequency at the monitoring point of the guide vanes on fluid is as consistent as that of the number of the runner.The amplitude of the dominant frequency at the monitoring point is related to the point location.When the monitoring point is close to the vaneless area between the guide vane and the runner,the amplitude is larger.The further the distance from the vaneless area is,the smaller the amplitude is,and the smaller the influence of dynamic and static interference between the guide vane and the runner is.The research could provide reference for the design of cryogenic expander.(9 Figures,1 Table,21 References)
作者 黄宁 李振林 HUANG Ning;LI Zhenlin(College of Mechanical and Transportation Engineering,China University of Petroleum(Beijing))
出处 《油气储运》 CAS 北大核心 2020年第7期808-812,共5页 Oil & Gas Storage and Transportation
关键词 低温膨胀机 压力脉动 转轮 导叶 低温液化天然气 非定常模拟 cryogenic expander pressure pulsation runner guide vane cryogenic LNG unsteady simulation
  • 相关文献

参考文献14

  • 1史广泰,刘小兵,魏文景,刘洋.含导叶的液力透平内部压力脉动特性[J].排灌机械工程学报,2017,35(1):6-12. 被引量:8
  • 2黄彪,吴钦,王国玉.非定常空化流动研究现状与进展[J].排灌机械工程学报,2018,36(1):1-14. 被引量:27
  • 3张兴,赖喜德,廖姣,张文明.混流式水轮机尾水管涡带及其改善措施研究[J].水力发电学报,2017,36(6):79-85. 被引量:13
  • 4李琪飞,谭海燕,李仁年,蒋雷,吕文娟.异常低水头对水泵水轮机压力脉动的影响[J].排灌机械工程学报,2016,34(2):99-104. 被引量:9
  • 5王乐勤,刘迎圆,刘万江,覃大清,焦磊.水泵水轮机泵工况的压力脉动特性[J].排灌机械工程学报,2013,31(1):7-10. 被引量:18
  • 6肖若富,孙卉,刘伟超,王福军.预开导叶下水泵水轮机S特性及其压力脉动分析[J].机械工程学报,2012,48(8):174-179. 被引量:38
  • 7钱忠东,陆杰,郭志伟,张建军.水泵水轮机在水轮机工况下压力脉动特性[J].排灌机械工程学报,2016,34(8):672-678. 被引量:28
  • 8M.Ablikim,M.N.Achasov,P.Adlarson,S.Ahmed,M.Albrecht,M.Alekseev,A.Amoroso,F.F.An,Q.An,Y.Bai,O.Bakina,R.Baldini Ferroli,Y.Ban,K.Begzsuren,J.V.Bennett,N.Berger,M.Bertani,D.Bettoni,F.Bianchi,J Biernat,J.Bloms,I.Boyko,R.A.Briere,L.Calibbi,H.Cai,X.Cai,A.Calcaterra,G.F.Cao,N.Cao,S.A.Cetin,J.Chai,J.F.Chang,W.L.Chang,J.Charles,G.Chelkov,Chen,G.Chen,H.S.Chen,J.C.Chen,M.L.Chen,S.J.Chen,Y.B.Chen,H.Y.Cheng,W.Cheng,G.Cibinetto,F.Cossio,X.F.Cui,H.L.Dai,J.P.Dai,X.C.Dai,A.Dbeyssi,D.Dedovich,Z.Y.Deng,A.Denig,Denysenko,M.Destefanis,S.Descotes-Genon,F.De Mori,Y.Ding,C.Dong,J.Dong,L.Y.Dong,M.Y.Dong,Z.L.Dou,S.X.Du,S.I.Eidelman,J.Z.Fan,J.Fang,S.S.Fang,Y.Fang,R.Farinelli,L.Fava,F.Feldbauer,G.Felici,C.Q.Feng,M.Fritsch,C.D.Fu,Y.Fu,Q.Gao,X.L.Gao,Y.Gao,Y.Gao,Y.G.Gao,Z.Gao,B.Garillon,I.Garzia,E.M.Gersabeck,A.Gilman,K.Goetzen,L.Gong,W.X.Gong,W.Gradl,M.Greco,L.M.Gu,M.H.Gu,Y.T.Gu,A.Q.Guo,F.K.Guo,L.B.Guo,R.P.Guo,Y.P.Guo,A.Guskov,S.Han,X.Q.Hao,F.A.Harris,K.L.He,F.H.Heinsius,T.Held,Y.K.Heng,Y.R.Hou,Z.L.Hou,H.M.Hu,J.F.Hu,T.Hu,Y.Hu,G.S.Huang,J.S.Huang,X.T.Huang,X.Z.Huang,Z.L.Huang,N.Huesken,T.Hussain,W.Ikegami Andersson,W.Imoehl,M.Irshad,Q.Ji,Q.P.Ji,X.B.Ji,X.L.Ji,H.L.Jiang,X.S.Jiang,X.Y.Jiang,J.B.Jiao,Z.Jiao,D.P.Jin,S.Jin,Y.Jin,T.Johansson,N.Kalantar-Nayestanaki,X.S.Kang,R.Kappert,M.Kavatsyuk,B.C.Ke,I.K.Keshk,T.Khan,A.Khoukaz,P.Kiese,R.Kiuchi,R.Kliemt,L.Koch,O.B.Kolcu,B.Kopf,M.Kuemmel,M.Kuessner,A.Kupsc,M.Kurth,M.G.Kurth,W.Kuhn,J.S.Lange,P.Larin,L.Lavezzi,H.Leithoff,T.Lenz,C.Li,Cheng Li,D.M.Li,F.Li,F.Y.Li,G.Li,H.B.Li,H.J.Li,J.C.Li,J.W.Li,Ke Li,L.K.Li,Lei Li,P.L.Li,P.R.Li,Q.Y.Li,W.D.Li,W.G.Li,X.H.Li,X.L.Li,X.N.Li,X.Q.Li,Z.B.Li,H.Liang,H.Liang,Y.F.Liang,Y.T.Liang,G.R.Liao,L.Z.Liao,J.Libby,C.X.Lin,D.X.Lin,Y.J.Lin,B.Liu,B.J.Liu,C.X.Liu,D.Liu,D.Y.Liu,F.H.Liu,Fang Liu,Feng Liu,H.B.Liu,H.M.Liu,Huanhuan Liu,Huihui Liu,J.B.Liu,J.Y.Liu,K.Y.Liu,Ke Liu,Q.Liu,S.B.Liu,T.Liu,X.Liu,X.Y.Liu,Y.B.Liu,Z.A.Liu,Zhiqing Liu,Y.F.Long,X.C.Lou,H.J.Lu,J.D.Lu,J.G.Lu,Y.Lu,Y.P.Lu,C.L.Luo,M.X.Luo,P.W.Luo,T.Luo,X.L.Luo,S.Lusso,X.R.Lyu,F.C.Ma,H.L.Ma,L.L.Ma,M.M.Ma,Q.M.Ma,X.N.Ma,X.X.Ma,X.Y.Ma,Y.M.Ma,F.E.Maas,M.Maggiora,S.Maldaner,S.Malde,Q.A.Malik,A.Mangoni,Y.J.Mao,Z.P.Mao,S.Marcello,Z.X.Meng,J.G.Messchendorp,G.Mezzadri,J.Min,T.J.Min,R.E.Mitchell,X.H.Mo,Y.J.Mo,C.Morales Morales,N.Yu.Muchnoi,H.Muramatsu,A.Mustafa,S.Nakhoul,Y.Nefedov,F.Nerling,I.B.Nikolaev,Z.Ning,S.Nisar,S.L.Niu,S.L.Olsen,Q.Ouyang,S.Pacetti,Y.Pan,M.Papenbrock,P.Patteri,M.Pelizaeus,H.P.Peng,K.Peters,A.A.Petrov,J.Pettersson,J.L.Ping,R.G.Ping,A.Pitka,R.Poling,V.Prasad,M.Qi,T.Y.Qi,S.Qian,C.F.Qiao,N.Qin,X.P.Qin,X.S.Qin,Z.H.Qin,J.F.Qiu,S.Q.Qu,K.H.Rashid,C.F.Redmer,M.Richter,M.Ripka,A.Rivetti,V.Rodin,M.Rolo,G.Rong,J.L.Rosner,Ch.Rosner,M.Rump,A.Sarantsev,M.Savrie,K.Schoenning,W.Shan,X.Y.Shan,M.Shao,C.P.Shen,P.X.Shen,X.Y.Shen,H.Y.Sheng,X.Shi,X.D Shi,J.J.Song,Q.Q.Song,X.Y.Song,S.Sosio,C.Sowa,S.Spataro,F.F.Sui,G.X.Sun,J.F.Sun,L.Sun,S.S.Sun,X.H.Sun,Y.J.Sun,Y.K Sun,Y.Z.Sun,Z.J.Sun,Z.T.Sun,Y.T Tan,C.J.Tang,G.Y.Tang,X.Tang,V.Thoren,B.Tsednee,I.Uman,B.Wang,B.L.Wang,C.W.Wang,D.Y.Wang,H.H.Wang,K.Wang,L.L.Wang,L.S.Wang,M.Wang,M.Z.Wang,Wang Meng,P.L.Wang,R.M.Wang,W.P.Wang,X.Wang,X.F.Wang,X.L.Wang,Y.Wang,Y.F.Wang,Z.Wang,Z.G.Wang,Z.Y.Wang,Zongyuan Wang,T.Weber,D.H.Wei,P.Weidenkaff,H.W.Wen,S.P.Wen,U.Wiedner,G.Wilkinson,M.Wolke,L.H.Wu,L.J.Wu,Z.Wu,L.Xia,Y.Xia,S.Y.Xiao,Y.J.Xiao,Z.J.Xiao,Y.G.Xie,Y.H.Xie,T.Y.Xing,X.A.Xiong,Q.L.Xiu,G.F.Xu,L.Xu,Q.J.Xu,W.Xu,X.P.Xu,F.Yan,L.Yan,W.B.Yan,W.C.Yan,Y.H.Yan,H.J.Yang,H.X.Yang,L.Yang,R.X.Yang,S.L.Yang,Y.H.Yang,Y.X.Yang,Yifan Yang,Z.Q.Yang,M.Ye,M.H.Ye,J.H.Yin,Z.Y.You,B.X.Yu,C.X.Yu,J.S.Yu,C.Z.Yuan,X.Q.Yuan,Y.Yuan,A.Yuncu,A.A.Zafar,Y.Zeng,B.X.Zhang,B.Y.Zhang,C.C.Zhang,D.H.Zhang,H.H.Zhang,H.Y.Zhang,J.Zhang,J.L.Zhang,J.Q.Zhang,J.W.Zhang,J.Y.Zhang,J.Z.Zhang,K.Zhang,L.Zhang,S.F.Zhang,T.J.Zhang,X.Y.Zhang,Y.Zhang,Y.H.Zhang,Y.T.Zhang,Yang Zhang,Yao Zhang,Yi Zhang,Yu Zhang,Z.H.Zhang,Z.P.Zhang,Z.Q.Zhang,Z.Y.Zhang,G.Zhao,J.W.Zhao,J.Y.Zhao,J.Z.Zhao,Lei Zhao,Ling Zhao,M.G.Zhao,Q.Zhao,S.J.Zhao,T.C.Zhao,Y.B.Zhao,Z.G.Zhao,A.Zhemchugov,B.Zheng,J.P.Zheng,Y.Zheng,Y.H.Zheng,B.Zhong,L.Zhou,L.P.Zhou,Q.Zhou,X.Zhou,X.K.Zhou,Xingyu Zhou,Xiaoyu Zhou,Xu Zhou,A.N.Zhu,J.Zhu,J.Zhu,K.Zhu,K.J.Zhu,S.H.Zhu,W.J.Zhu,X.L.Zhu,Y.C.Zhu,Y.S.Zhu,Z.A.Zhu,J.Zhuang,B.S.Zou,J.H.Zou,无.Future Physics Programme of BESⅢ[J].Chinese Physics C,2020,44(4). 被引量:537
  • 9花亦怀,黄宁,李振林,苏清博,褚洁.基于响应面与遗传算法的液力透平叶轮优化设计[J].北京石油化工学院学报,2018,26(2):51-55. 被引量:2
  • 10杨建东,胡金弘,曾威,杨桀彬.原型混流式水泵水轮机过渡过程中的压力脉动[J].水利学报,2016,47(7):858-864. 被引量:38

二级参考文献122

共引文献755

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部