期刊文献+

肌电假肢手抓握力控制系统的设计与实现 被引量:5

Design and implementation of grasping force control system for myoelectric prosthetic hands
下载PDF
导出
摘要 为使上肢残疾者佩戴的肌电假肢手能够稳定地抓握物体,设计了一种基于表面肌电(sEMG)信号和力敏电阻器(FSR)的假肢手抓握力控制系统。系统以数字信号处理器(DSP)-ARM双处理器作为控制核心,通过sEMG传感器采集上肢残疾者手臂的表面肌电信号,从中解码期望的抓握力;通过FSR传感器采集假肢手抓握物体时的实际抓握力,作为反馈信号;然后运用无模型自适应控制方法实现假肢手抓握力的闭环控制。抓握力控制实验表明:该系统能够控制假肢手以期望力稳定地抓握物体。 In order to enable the myoelectric prosthetic hand worn by the upper limb disabled to grasp the object stably,a grasping force control system for prosthetic hands based on surface electromyographic(sEMG)signal and force-sensitive resistor(FSR)is designed.The system uses DSP-ARM dual processor as the control core,and collects the sEMG signal of the arm of the upper limb disabled through s EMG sensor to decode the desired grasping force.The actual grasping force is collected by the FSR sensor as a feedback signal when the prosthetic hand grasps the object.Then the model-free adaptive control method is used to realize the closed-loop control of the grasping force of the prosthetic hand.The grasping control experiment shows that the system can control the prosthetic hand to stably grasp the object with the desired force.
作者 周恩至 张翼 邓华 ZHOU Enzhi;ZHANG Yi;DENG Hua(State Key Laboratory of High Performance and Complex Manufacturing,Central South University,Changsha 410083,China)
出处 《传感器与微系统》 CSCD 2020年第9期94-96,100,共4页 Transducer and Microsystem Technologies
基金 国家“973”重点基础研究发展计划资助项目(2011CB013302) 国家重点研发计划资助项目(2018YFB1307203)。
关键词 表面肌电(sEMG)信号 力敏电阻 假肢手抓握力控制 力解码 无模型自适应控制 surface electromyographic(sEMG)signal force sensitive resistor(FSR) prosthetic hand grip force control force decoding model-free adaptive control(MFAC)
  • 相关文献

参考文献4

二级参考文献39

  • 1陈俊勇.对SRTM3和GTOPO30地形数据质量的评估[J].武汉大学学报(信息科学版),2005,30(11):941-944. 被引量:103
  • 2IBERALL T. Grasp planning for human prehension[J]. Robotics, 1986: 1153-1156.
  • 3VUSKOVIV M I, POZOS A L, POZOS R. Classification of grasp modes based on electromyographic patterns of preshaping motions[C]// IEEE International Conferenceon Systems, Man. and Cybernetics, October 22-25, 1995, Vancouver, BC, Canada: IEEE, 1995: 89-95.
  • 4VUSKOVIC M, SIJIANG D. Classification of prehensile EMG patterns with simplified fuzzy ARTMAP networks[C]// International Joint Conference on Neural Networks, May 12-17, 2002, Honolulu, HI, USA: IEEE, 2002: 2539-2544.
  • 5FERGUSON S, DUNLOP G R. Grasp recognition from myoelectric signals[C]//Proceeding of 2002 Australasian Conference on Robotics and Automation, November 27-29, 2002, Auckland, New Zealand: ARAA, 2002: 83-87.
  • 6TAYLOR C L, SCHWARZ R J. The anatomy and mechanics of the human hand[J]. Artificial Limbs, 1955, 2: 22-35.
  • 7TEAGER H M, TEAGER S M. Evidence for nonlinear sound reduction mechanisms in the vocal tract[J]. Kluwer Acad. Publ, 1990: 241-261.
  • 8LI X, ZHOU P, ARUIN A S. Teager-Kaiser energy operation of surface EMG improves muscle activity onset detection[J]. Annals of Biomedical Engineering, 2007, 35(9): 1532-1538.
  • 9VUSKOVIC M, DU S J. Classification of prehensile EMG pattems with simplified fuzzy ARTMAP networks[C]// Proceedings of the International Joint Conference on Neural Networks, May 12-17, 2002, Honolulu, Hawaii: IEEE, 2002: 2539-2544.
  • 10HUDGINS B, PARKER P, SCOTT R N. A new strategy for multifunction myoelectric control[J]. IEEE Transaction on Biomedical Engineering, 1993, 40(1):82-94.

共引文献19

同被引文献32

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部