摘要
In this paper, a generalized (3+1)-dimensional variable-coefficient nonlinear-wave equation is studied in liquid with gas bubbles. Based on the Hirota’s bilinear form and symbolic computation, lump and interaction solutions between lump and solitary wave are obtained,which include a periodic-shape lump solution, a parabolic-shape lump solution, a cubic-shape lump solution, interaction solutions between lump and one solitary wave, and between lump and two solitary waves. The spatial structures called the bright lump wave and the bright-dark lump wave are discussed. Interaction behaviors of two bright-dark lump waves and a periodic-shape bright lump wave are also presented. Their interactions are shown in some 3D plots.
基金
Project supported by National Natural Science Foundation of China(Grant No 81960715)
Science and Technology Project of Education Department of Jiangxi Province(GJJ151079)。