期刊文献+

装备保障性验证知识图谱构建方法研究 被引量:1

Research on Construction Method of Knowledge Graph for Equipment Supportability Verification
下载PDF
导出
摘要 装备保障性验证是控制装备保障性达到目标要求的有效手段,目前,装备保障性验证领域积累了很多技术方法以及海量异构的数据。知识图谱具有对知识、数据进行梳理从而进一步实现机器智能的作用。构建装备保障性验证领域知识图谱也将是装备保障性领域迈向智能化的开端。首先简要介绍装备保障性验证发展现状,其次概括知识图谱构建的技术方法和研究热点,然后提出装备保障性验证领域知识图谱构建方法以及逻辑和技术流程,最后对未来发展前景做了展望。 Equipment supportability verification is an effective means to control equipment supportability to meet target requirements. At present, the field of equipment support verification has accumulated many technical methods and massive heterogeneous data. Knowledge graph has functions for sorting knowledge and data to further realize machine intelligence.Building knowledge graph for equipment supportability verification marks the initial effort of intelligence in the field of equipment supportability. This paper firstly introduces the development status of equipment supportability verification. Then, it summarizes the technical methods and research focuses of knowledge graph construction. Thirdly, it proposes the method as a logic and the technical process of knowledge graph construction in the field of equipment supportability. Finally, it depicts the future development.
作者 刘晨光 李星新 于永利 孙也尊 LIU Chenguang;LI Xingxin;YU Yongli;SUN Yezun(Shijiazhuang Campus of Army Engineering University,Shijiazhuang 050051,China;Unit 32382 of PLA,Beijing 100000,China)
出处 《软件工程》 2020年第9期5-8,4,共5页 Software Engineering
关键词 装备保障性 异构数据 知识图谱 本体 知识抽取 equipment supportability heterogeneous data knowledge graph ontology modeling knowledge extraction knowledge fusion
  • 相关文献

参考文献4

二级参考文献214

  • 1史树明.自动和半自动知识提取[J].中国计算机学会通讯,2013.9(8):65-73.
  • 2张坤.面向知识图谱的搜索技术(搜狗)[EB/OL].[2015-02-18].http://www.cipsc.org.cn/kgl/.
  • 3李涓子.知识图谱:大数据语义链接的基石[EB/OL].[2015-02-20].http://www.cipsc.org,cn/kg2/.
  • 4Miller G A. WordNet: A lexical database for English [J]. Communications of the ACM, 1995, 38(11): 39-41.
  • 5Bollacker K, Evans C, Paritosh P, et al. Freebase: A collaboratively created graph database for structuring human knowledge [C] //Proe of KDD. New York: ACM, 2008: 1247-1250.
  • 6Miller E. An introduction to the resource description framework [J]. Bulletin of the American Society for Information Science and Technology, 1998, 25(1): 15-19.
  • 7Bengio Y. Learning deep architectures for AI [J]. Foundations and Trends in Machine Learning, 2099, 2 (1) 1-127.
  • 8Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
  • 9Turian J, Ratinov L, Bengio Y. Word representations: A simple and general method for semi-supervised learning [C]// Proc of ACL. Stroudsburg, PA: ACL, 2010:384-394.
  • 10Manning C D, Raghavan P, Schutze H. Introduction to Information Retrieval [M]. Cambridge, UK: Cambridge University Press, 2008.

共引文献764

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部