期刊文献+

带两个化学物质的趋化模型分岔解的稳定性

The Stability of Bifurcating Solution of a Chemotaxis System with Two Chemical Substances
原文传递
导出
摘要 研究文献[1]中的带两个化学物质的趋化模型分岔解的稳定性.应用展开方法、谱分析、线性化稳定性理论证明了当参数满足特定条件下,分岔解是稳定的. The stability of bifurcating solution of a chemotaxis system with two chemical substances obtained in reference[1]is investigated.Applying the expansion method,spectral analysis and the principle of the linearized stability,the stability of the bifurcation solution is proved when the parameters satisfy some certain conditions.
作者 王丽伟 徐茜 Wang Liwei;Xu Qian(Institute of Fundamental and Interdisciplinary Sciences,Beijing Union University,Beijing 100101,China)
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第4期22-31,共10页 Acta Scientiarum Naturalium Universitatis Nankaiensis
基金 Supported by the National Natural Science Foundation of China(11871048) Premium Funding Project for Academic Human Resources Development in Beijing Union University(BPHR2019CZ07,BPHR 2020EZ01) Scientific Research Program of Beijing Municipal Education Commission(KM202011417010)。
关键词 谱分析 稳定性 spectral analysis stability
  • 相关文献

参考文献1

二级参考文献8

  • 1Painter K J, Maini P K, Othmer H G. Development and applications of a model for cellular response to multiple chemotactic cues [J]. Journal of Mathematical Biology, 2000,41(4):285-314.
  • 2Xu Q, Liu X, Zhang L. The global existence of solutions in time for a chemotaxis model with two chemicals [J]. Journal of Applied Mathematics, 2014, DOI: 10.1155/2014/186125.
  • 3Mimura M, Tsujikawa T. Aggregating pattern dynamics in a chemotaxis model including growth [J]. Physica A., 1996,230(3/4) :499-543.
  • 4Winkler M. Absence of collapse in a parabolic chemotaxis system with signal dependent sensitivity [J]. Mathematische Nachrichten, 2010,283(11):1664-1673.
  • 5Hillen T, Painter K. Volume filling and quorum sensing in models for chemosensitive movement [J]. Canadian Applied Mathematics Quarterly, 2002,10(4):501-543.
  • 6Crandall M, Rabinowitz P. Bifurcation from simple eigenvalues [J], J. Functional Analysis, 1971,8(2):321-340.
  • 7Shi J, Wang X. On the global bifurcation for quasilinear elliptic systems on bounded domains [J]. J. Diff. Eqs., 2009,246(7):2788-2812.
  • 8陈红兵,何万生.一类具有收获率竞争系统的稳定性及Hopf分岔[J].纯粹数学与应用数学,2012,28(5):604-613. 被引量:3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部