摘要
通过引进参数,构造一个定义在全平面上的积分核函数,利用正割函数的有理分式展开,建立一个常数因子与正割函数高阶导数有关的Hilbert型积分不等式.另外,赋予结论中的参数不同的值,文中还给出了一些特殊结果.
By introducing parameters,we construct a new kernel function involving hyperbolic functions in the whole plane,an by using the rational fraction expansion of secant function,a Hilbert-type integral inequality with the constant factor related to the higher derivative of secant function is established.In addition,giving the parameters different values,some meaningful Hilbert-type inequalities are obtained.
作者
董飞
范献胜
王晓宇
DONG Fei;FAN Xian-sheng;WANG Xiao-yu(Mathematics Teaching and Research Section,Zhejiang Institute of Mechanical and Electrical Engineering,Hangzhou 310053,China)
出处
《数学的实践与认识》
北大核心
2020年第15期293-298,共6页
Mathematics in Practice and Theory
基金
浙江机电职业技术学院科教融合一般项目(A-0271-18-014)。