摘要
针对高频数据建模中常用的自回归条件持续期(ACD)模型,在允许误差方差无穷的条件下,构造模型参数的自加权最小一乘(SLAD)估计,并证明了该估计的相合性和渐近正态性.数值模拟显示SLAD估计比拟极大似然估计和最小一乘估计更稳健,最后将其应用于青岛海尔和宝信软件这两只股票的价格持续期建模.
The self-weighted least absolute deviation(SLAD) estimation for autoregressive conditional duration models with possibly infinite variance is proposed in this paper, and is shown to be consistent and asymptotically normal distributed. A large number of simulation studies confirm our theoretical results and suggest that the SLAD estimation is more robust compared to quasi-maximum likelihood estimation and least absolute deviation estimation. An application to two stocks’ price durations shows that the performance of SLAD estimation is more better.
作者
傅可昂
吴梦雪
黄炜
王江峰
FU Ke-ang;WU Meng-xue;HUANG Wei;WANG Jiang-feng(Department of Statistics,Zhejiang University City College,Hangzhou 310015,China;School of Statistics and Mathematics,Zhejiang Gongshang University,Hangzhou 310018,China;School of Mathematical Sciences,Zhejiang University,Hangzhou 310027,China)
出处
《高校应用数学学报(A辑)》
北大核心
2020年第3期253-264,共12页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金(11971432,11301481)
浙江省一流学科A类(浙江工商大学统计学)。
关键词
自回归条件持续期模型
自加权最小一乘估计
相合性
渐近正态性
价格持续期
autoregressive conditional duration
self-weighted least absolute deviation estimation
consistency
asymptotic normality
price duration