期刊文献+

基于新型特征和特征袋模型的内窥镜大肠病变辅助诊断 被引量:2

Assisted Diagnosis of Endoscopy Large Intestine Disease Based on Novel Feature and Bag of Feature Model
下载PDF
导出
摘要 息肉和溃疡性结肠炎(溃结)是常见的大肠疾病。然而在进行内窥镜检查时,会产生大量图像。为了提高诊断效率和准确率,研究用于内窥镜大肠病变自动检测的计算机辅助诊断系统是十分必要的。考虑到内窥镜图像的特点,提出一种新型的颜色纹理特征,即局部颜色差异直方图(LCDH),并在特征提取阶段提取图像块的LCDH特征,对内窥镜图像进行表示;然后结合特征袋(Bof)模型,使用局部约束线性编码(LLC)和空间金字塔匹配(SPM)方法,将局部特征转化为更高层级的图像表示;最后,使用支持向量机(SVM)进行分类。对公开的Kvasir数据集进行实验,从原始数据中剔除部分劣质图像并进行5折交叉验证:实验1对数据集中800例正常样本和800例病变样本进行二分类,分类准确性、灵敏性和特异性分别达到97.88%,98.00%和97.75%;实验2对数据集中的1000例正常样本、770例息肉和780例UC样本进行多分类,其中对息肉和UC的识别率分别达到92.34%和93.08%。实验结果表明,所提出的方法在准确率和运行效率上均优于传统方法,能够为大肠疾病的辅助诊断提供有价值的帮助。 Polyps and ulcerative colitis(UC)are common diseases of the large intestine.A large number of images generated during the endoscopy.To improve the diagnosis efficiency and accuracy,it is necessary to investigate the computer aided diagnosis system for the detection of colonscopy diseases.Considering the characteristics of endoscopy image,a novel color texture feature called histogram of local color difference was proposed in this paper,and used as the endoscopic image description by extracting local color difference histogram(LCDH)feature for each image patch in the feature extraction step.Combining with the bag-of-features model,local features were transformed into a higher-level image representation by using local-constrained linear coding and spatial pyramid matching.At last,SVM was used for classification.public Kvasir datasets were analyzed,and inferior images were deleted from original data and 5-fold cross validation was adopted.In the first experiment,the classification accuracy,sensitivity and specificity reached 97.88%,98.00%and 97.75%respectively for 800 normal samples and 800 disease samples;in the second experiment,1000 normal samples,770 polyp samples and 780 UC samples were adopted for multiple classification,the recognition rate of polyp and UC was 92.34%and 93.08%respectively.Experimental results showed that the proposed method possessed advantages both in accuracy and efficiency compared with the traditional method,which would be helpful for clinical diagnosis of intestinal diseases.
作者 杨建军 常丽萍 李胜 朱霆威 何熊熊 Yang Jianjun;Chang Liping;Li Sheng;Zhu Tingwei;He Xiongxiong(College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China)
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2020年第4期404-412,共9页 Chinese Journal of Biomedical Engineering
基金 浙江省自然科学基金(LY18F010023) 浙江省重点研发计划项目(2020C03074) 国家自然科学基金(61675183)。
关键词 内窥镜图像 息肉 溃疡性结肠炎 特征提取 特征袋 endoscopy image polyps ulcerative colitis feature extraction bag-of-features
  • 相关文献

参考文献6

二级参考文献59

  • 1刘文斌,吕愈敏,杨雪玲,金珠.粪便钙卫蛋白对溃疡性结肠炎活动性判断价值的研究[J].中华消化杂志,2005,25(7):394-397. 被引量:19
  • 2曹琼,郑红,李行善.一种基于纹理特征的卫星遥感图像云探测方法[J].航空学报,2007,28(3):661-666. 被引量:31
  • 3Swain P. Wireless Capsule Endoseopy[J]. Gut, 2003,52:48-50.
  • 4Fan Y, Meng M Q H. 3D Reconstruction of WCE images by af- fine SIFT method[C]//Proc. 9th World (k)ngr. Intell. Controll Autora. 2011 : 943-947.
  • 5Meng M Q H, Zhao Qiaru A Strategy to Abstract WCE Video (;lips Based on LDA[C] ff International Conference on Robotics and Automatiov. May 2011:454-459.
  • 6Chen D, Meng M-H, Wang H, et al. A novel strategy to label abnormalities for wireless capsule endoscopy frames sequence[C] ff International Oonferenee on Information and Automation, ICIA. 2011 .. 379-383.
  • 7Hwang, Sae. Bag-of-Visual-WoMsf Approach to Abnormal Im- age Detection in Wireless Capsule Endoscopy Videos. Advances in Visual Computing [M]. Berlin Heidelberg: Springer, 2011 : 320-327.
  • 8Hwang S, Celebi M. Multilevel Wireless Capsule Endoscopy Video Segmentation[C] ft. Proe. of SPIE Vol. Vol. 7623. 2010.
  • 9Hwang, Sae, et al. Blood Detection in Wireless Capsule Endosco- py Using Expectation Maximization Clustering[M]. Medical Im- aging, International Society for Optics and Photonics, 2006.
  • 10Maekiewiez M, Berens J, Fisher M. Wireless Capsule Endoscopy Video Segmentation Using Support Vector Classifiers And Hid-den Markov Models[C]//Proe. International Conference Medi- cal Image Understanding and Analyses. June 2006.

共引文献47

同被引文献19

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部