摘要
深度学习理论在微创手术视频分析中的应用日趋广泛,在微创手术工具检测与跟踪、微创手术工具存在检测和微创手术流程识别等领域已取得令人瞩目的成果。从长远来看,对微创手术视频内容进行细致分析,不但可以自动识别正在进行的微创手术任务,而且可以用来提醒临床医生注意可能出现的并发症。近年来,随着技术的不断发展,深度学习在微创手术视频分析中的应用已取得很大的进展。首先系统阐述微创手术视频分析的意义、难点和相关技术内容,重点介绍深度学习算法的优势;然后总结近年来深度学习在微创手术工具检测与跟踪、微创手术工具存在检测及微创手术流程识别等领域取得的研究成果,在微创手术视频分析的不同领域基于算法特点进行分类总结,并对不同算法进行比较评价;最后,对微创手术视频分析未来的发展方向进行展望。
Deep learning theory has been widely used in the video analysis of minimally invasive surgery,and has made remarkable achievements in the surgical tool detection and tracking,surgical tool presence detection and workflow recognition of minimally invasive surgery.In the long run,the detailed analysis of the video content of minimally invasive surgery can not only automatically identify the ongoing surgical tasks,but also be used to remind clinicians of possible complications.In recent years,with the continuous development of technology,the application of deep learning in the video analysis of minimally invasive surgery has made great progress.This paper firstly expounded the significance,difficulties and the relevant technical content of video analysis of minimally invasive surgery,mainly introducing the advantages based on deep learning algorithm.This paper also summarized the research achievements of deep learning in the field of surgical tool detection and tracking,surgical tool presence detection and workflow recognition of minimally invasive surgery,classified and concluded algorithms based on their features in different fields of minimally invasive surgery video analysis,and evaluated their results.In the end,this paper summarized and looked forward to the future development of minimally invasive surgery video analysis.
作者
史攀
赵子健
Shi Pan;Zhao Zijian(School of Control Science and Engineering,Shandong University,Jinan 250061,China)
出处
《中国生物医学工程学报》
CAS
CSCD
北大核心
2020年第4期473-484,共12页
Chinese Journal of Biomedical Engineering
基金
国家重点研发计划(2019YFB1311302)
国家自然科学基金(61273277,81401543)。
关键词
深度学习
微创手术视频分析
完全监督
弱监督
自监督
deep learning
video analysis of minimally invasive surgery
fully supervision
weak supervision
self-supervision