期刊文献+

无人机辅助的基于前馈神经网络的节点定位算法 被引量:2

UAV-assisted localization algorithm based on Feedforward Neural Network
下载PDF
导出
摘要 针对无线传感网络(WSNs)的节点定位问题,提出无人机辅助的基于前馈神经网络的节点定位(UAV-NN)算法。UAV-NN算法利用无人机(UAV)作为锚节点,并由UAV周期地发射beacon信号,利用极端学习机(LEM)训练单隐藏前向反馈的神经网络(SLFN),未知节点接收来自UAV发射的beacon信号,并记录其接收信号强度指示(RSSI),已训练的SLFN再依据RSSI值估计节点位置。仿真结果表明,相比于传统的基于RSSI定位算法,提出的UAV-NN算法无需部署地面锚节点;相比其他传统的机器学习算法,UAV-NN算法通过引用ELM,减少了定位误差。 Aiming at the problem of node location in Wireless Sensor Network(WSNs), Unmanned Aerial Vehicle-assisted localization algorithm based on Feedforward Neural Network(UAV-NN) is proposed. The localization is performed by using mobile Unmanned Aerial Vehicles(UAVs) as the anchor nodes to send the beacon signals every period of time, thus every unknown node can estimate its current position based on the Received Signal Strength Indicator(RSSI) values of the received beacon signals by training the Single hidden-Layer Feedforward Neural Network(SLFN) using Extreme Learning Machine(ELM) technique. The proposed method requires fewer anchor nodes and no ground anchor node compared to traditional RSSI based localization technique to yield better accuracy. Simulation results show that this technique is capable of performing real-time localization for unknown nodes with less localization error by using ELM compared to other traditional machine learning algorithms.
作者 王冬梅 WANG Dongmei(Department of Information Engineering,Zhumadian Career Technical College,Zhumadian Henan 463000,China)
出处 《太赫兹科学与电子信息学报》 北大核心 2020年第4期616-619,638,共5页 Journal of Terahertz Science and Electronic Information Technology
关键词 无人机 定位 单隐藏前向反馈的神经网络 接收信号强度指示 极端学习机 Unmanned Aerial Vehicle localization Single hidden-Layer Feedforward Neural Network Received Signal Strength Indicator Extreme Learning Machine
  • 相关文献

参考文献3

二级参考文献31

  • 1Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks, 1991, 4(2): 251-257.
  • 2Leshno M, Lin V Y, Pinkus A, Schocken S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks, 1993, 6(6) : 861-867.
  • 3Huang G-B, Babri H A. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Transactions on Neural Networks, 1998, 9(1): 224-229.
  • 4Huang G-B. Learning capability and storage capacity of two hidden-layer feedforward networks. IEEE Transactions on Neural Networks, 2003, 14(2): 274-281.
  • 5Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: Theory and applications. Neurocomputing, 2006, 70 (1-3): 489-501.
  • 6Vapnik V N. The Nature of Statistical Learning Theory. New York: Springer, 1995.
  • 7Rousseeuw P J, Leroy A. Robust Regression and Outlier Detection. New York: Wiley, 1987.
  • 8Rumelhart D E, McClelland J L. Parallel Distributed Processing. Cambridge.. MIT Press, 1986, 1(2): 125-187.
  • 9Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines. Cambridge: Cambridge University Press, 2000.
  • 10Tamura S, Tateishi M. Capabilities of a four-layered feedforward neural network: Four layers versus three. IEEE Transactions on Neural Networks, 1997, 8(2): 251-255.

共引文献217

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部