期刊文献+

基于WSSOR迭代的大规模MIMO系统软输出信号检测 被引量:1

SOFT OUTPUT SIGNAL DETECTION FOR MASSIVE MIMO SYSTEMS BASED ON WSSOR ITERATION
下载PDF
导出
摘要 在大规模多输入多输出(Multiple Input Multiple Output,MIMO)系统中,最小均方误差(Minimum Mean Square Error,MMSE)检测算法能获得最优线性检测性能,但涉及复杂的高维矩阵求逆运算。基于加权-对称连续超松弛(Weighted Symmetric Successive Over Relaxation,WSSOR)迭代提出一种高性能低复杂度的软输出检测算法,避免复杂的矩阵求逆运算,降低算法的复杂度。采用一种简单的量化方法来求解松弛参数和加权因子,应用在软判决中,进一步提升算法性能。定量地分析了不同算法的复杂度,并通过仿真对不同检测算法的误码率性能和收敛速度进行研究,结果表明该算法在降低复杂度的情况下,能以较快的收敛速度接近最优的线性检测性能。 In massive multiple input multiple output(MIMO)system,the minimum mean square error(MMSE)detection algorithm can achieve optimal linear detection performance,but it involves complex high-dimensional matrix inversion operations.Therefore,we propose a high performance and low complexity soft-output signal detection algorithm based on weighted symmetric successive over relaxation(WSSOR)iteration,which avoids complex matrix inversion operations and reduces the complexity of the algorithm.we used a simple quantization method to solve the relaxation parameters and weighting factors.Then,it was applied in the soft decision to further improve the performance of the algorithm.Through theoretical research,the complexity of different algorithms was quantitatively analyzed,and the bit error rate performance and convergence speed of different detection algorithms were studied through simulation.The results show that our algorithm can approach the optimal linear detection performance with faster convergence speed under the condition of reducing the complexity.
作者 周围 张维 唐俊 王强 Zhou Wei;Zhang Wei;Tang Jun;Wang Qiang(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Chongqing Key Laboratory of Mobile Communications Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《计算机应用与软件》 北大核心 2020年第9期56-61,共6页 Computer Applications and Software
基金 国家自然科学基金面上项目(61771085) 重庆市基础与前沿研究计划项目(cstc2015jcyjA40040)。
关键词 大规模多输入多输出 信号检测 WSSOR迭代 松弛参数 加权因子 软判决 Massive MIMO Signal detection WSSOR iteration Relaxation parameter Weighting factor Soft decision
  • 相关文献

参考文献5

二级参考文献40

  • 13 rd Generation Partnership Project.TR 25.913-900.Requirements for Evolved UTRA(E-UTRA)and Evolved UTRAN(E-UTRAN),2009.
  • 23rd Generation Partnership Project.TR 36.912-900.Feasibility Study for Further a Advancements for E-UTRA(LTE-Advanced),2011.
  • 3Marzetta L T.Noncooperative cellular wireless with unlimited numbers of base station antennas.IEEE Transactions on Wireless Communications,2010,9(11):3590-3600.
  • 4Rusek F,Persson D,Lau B K,et al.Scaling up MIMO:opportunities and challenges with very large arrays.Signal Processing Magazine,2013,30(1):40-60.
  • 5Lu L,Li G Y,Swindlehurst L A,et al.An overview of massive MIMO:benefits and challenges.IEEE Journal of Selected Topics in Signal Processing,2014,8(5):742-758.
  • 6Larsson G E,Edfors O,Tufvesson F,et al.Massive MIMO for next generation wireless systems.IEEE Communications Magazine,2014,52(2):186-195.
  • 7Adhikary A,Nam J,Ahn J,et al.Joint spatial division and multiplexing-the large-scale array regime.IEEE Transactions on Information Theory,2013,59(10):6441-6463.
  • 8Sun C,Gao X Q,Jin S,et al.Beam division multiple access transmission for massive MIMO.IEEE Transactions on Communications,revised.
  • 9Nam J,Ahn J,Adhikary A,et al.Joint spatial division and multiplexing:realizing massive MIMO gains with limited channel state information.Proceedings of Information Sciences and Systems(CISS),Princeton,New Jersey,USA,2012:1-6.
  • 10Nam J,Adhikary A,Ahn J,et al.Joint spatial division and multiplexing:opportunistic beamforming,user grouping and simplified downlink scheduling.IEEE Journal of Selected Topics in Signal Processing,2014,8(5):876-890.

共引文献73

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部