期刊文献+

基于Fisher特征选择的微表情识别 被引量:3

MICRO-EXPRESSION RECOGNITION BASED ON FISHER FEATURE SELECTION
下载PDF
导出
摘要 微表情时空特征描述子提取到的特征向量维数高,导致分类算法运算复杂度高,运行时间长,识别准确率较低。为此提出基于Fisher特征选择的方法,挑选鉴别力强的特征分量,对特征向量进行降维。采用“留一交叉验证”法,在CASMEII和SMIC两个数据集下分类实验表明,经Fisher特征选择后微表情的识别率可以达到75.71%和75%,分别较原特征向量识别率提高了61.22%和46.43%,而维数仅为原特征向量维数的4.18%和4.71%,分类所需时间是原方法的4.27%和1.61%。 The high dimension of feature vectors extracted from spatio-temporal descriptors of micro-expression results in high computational complexity,long running time and low recognition accuracy of classification algorithms.This paper proposes a method based on Fisher feature selection to select feature components with strong discrimination and reduce the dimension of feature vectors.By using the method of"leave-one-out-cross-validation",the classification experiments on CASMEII and SMIC datasets show that the recognition rate of micro-expression after Fisher feature selection can reach 75.71%and 75%,which are 61.22%and 46.43%higher than that of the original feature vectors respectively.The dimension is only 4.18%and 4.71%of the original feature vectors dimension,and the time required for classification is only 4.27%and 1.61%of the original method.
作者 张延良 卢冰 蒋涵笑 洪晓鹏 赵国英 张伟涛 Zhang Yanliang;Lu Bing;Jiang Hanxiao;Hong Xiaopeng;Zhao Guoying;Zhang Weitao(School of Physics and Electronic Information,Henan Polytechnic University,Jiaozuo 454150,Henan,China;School of Electronic and Information Engineering,Xi’an Jiaotong University,Xi’an 710049,Shaanxi,China;Center for Machine Vision and Signal Analysis,University of Oulu,Oulu FI-90014,Finland;School of Electronic Engineering,Xidian University,Xi’an 710071,Shaanxi,China)
出处 《计算机应用与软件》 北大核心 2020年第9期68-74,共7页 Computer Applications and Software
基金 国家自然科学基金项目(61571339) 网络与交换技术国家重点实验室开放课题(SKLNST-2016-1-02) 河南理工大学博士基金项目(B2017-55)。
关键词 微表情识别 特征描述子 Fisher特征选择 识别准确率 Micro-expression recognition Feature descriptors Fisher feature selection Recognition accuracy
  • 相关文献

同被引文献24

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部