期刊文献+

基于改进RRT算法的6-DOF机器人路径规划 被引量:15

PATH PLANNING OF 6-DOF ROBOT BASED ON IMPROVED RRT ALGORITHM
下载PDF
导出
摘要 针对传统快速扩展随机树(RRT)算法在机器人路径规划中随机性大、冗余节点多、无法生成最优路径这一系列问题,从引入权重系数、路径缩短、拐角平滑处理这三方面对传统RRT算法进行优化,使6-DOF机械臂能有效避开障碍物,并通过距离最短路径到达目标点。同时,在角速度不连续处根据机械臂曲率约束进行路径平滑过渡处理,消除初始路径中锯齿状部分,保证路径平稳性。仿真实验表明,改进RRT算法提高了路径搜寻成功率并将原始路径距离缩短25%,平均规划时间缩短75%。 The traditional rapidly exploring random tree(RRT)algorithm has a series of problems in robot path planning,such as large randomness,a lot of redundant nodes,and unable to generate the optimal path.Therefore,this paper optimizes the traditional RRT algorithm from the introduction of weight coefficients,path shortening,and corner smoothing processing.The 6-DOF manipulator could effectively avoid obstacles and reach the target point through the shortest path.According to the curvature constraints of the mechanical arm,the smooth transition of the path was performed at the position of the angular velocity discontinuity,so as to eliminate the serrated part of the initial path and ensure the path stability.The simulation experiments show that the improved RRT algorithm improves the success rate of the path search,shortens the original path distance by 25%,and reduces the average planning time by 75%.
作者 李季 史晨发 邵磊 刘宏利 Li Ji;Shi Chenfa;Shao Lei;Liu Hongli(Tianjin University of Technology,Tianjin 300384,China)
机构地区 天津理工大学
出处 《计算机应用与软件》 北大核心 2020年第9期221-226,共6页 Computer Applications and Software
基金 天津市科技计划项目(15ZXZNGX00140) 天津市应用基础研究计划项目(16JCTPJC49400)。
关键词 6-DOF机器人 快速扩展随机树 权重系数 路径缩短 平滑处理 6-DOF robot RRT Weight coefficient Path shortening Smoothing processing
  • 相关文献

参考文献8

二级参考文献50

  • 1罗家佳,胡国清.基于MATLAB的机器人运动仿真研究[J].厦门大学学报(自然科学版),2005,44(5):640-644. 被引量:108
  • 2Kavraki L E,Svestka P,Latombe J C.Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J].IEEE Transactions on Robotics and Automation,1996,12(4):566-580.
  • 3LaValle S M.Planning algorithms[M].Cambridge,UK:Cambridge Press,2006.
  • 4LaValle S M.Rapidly-exploring random tress:A new tool for path planning,Technical Report No.98-11[R].
  • 5Lavalle S M,Kuffner J.Rapidly-exploring random trees:Progress and prospects[C]//Proceedings of International Workshop on Algorithmic Foundations of Robotics.New Hampshire:WAFR,2000.
  • 6Ettlin A,Bleuler H.Randomized rough-terrain robot motion planning[C]//Proceedings of the IEEE/RSJ International Conferance on Intelligent Robots and Systems.Beijing,China:IEEE,2006:5798-5803.
  • 7Bruce J,Veloso M.Real-time randomized path planning for robot navigation[C]//Proceedings of the IEEE International Conference on Intelligent Robots and System.Lausanne.Switzerland:IEEE,2002:2383-2388.
  • 8Ferguson D,Kalra N,Stentz A T,Replanning with RRTs[C]//Proceedings of the IEEE International Conference on Robotics and Automation.Orlando,Florida:IEEE,2006:1243-1248.
  • 9Zuckor M,Kuffner J,Branicky M.Multipartite RRTs for rapid replanning in dynamic environments[C]//Proc IEEE Int Conf Robotics and Automation.Roma,Italy:IEEE,2007:1603-1609.
  • 10王海英,蔡向东,尤波,张礼勇.基于遗传算法的移动机器人动态路径规划研究[J].传感器与微系统,2007,26(8):32-34. 被引量:11

共引文献204

同被引文献117

引证文献15

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部