摘要
钠离子电池(SIBs)具有成本低廉、环境友好等优点,在下一代低速电动汽车电源和大规模储能系统中拥有巨大的应用前景。开发性能优异、价格低廉的电极材料是促进钠离子电池早日实现商业化应用的关键,目前亟待探索和开发合适的高性能SIBs负极材料。由VI A主族中的氧/硫/硒组成的化合物作为SIBs负极材料具有成本相对较低、环境友好、理论容量和安全性较高的优点,受到研究者的广泛关注。由于氧/硫/硒化物负极材料的电子电导率不能满足电池大倍率充放电的需求,在电化学循环过程中伴随着巨大的体积膨胀,造成电极材料的粉碎与坍塌,该类材料在SIBs中的应用还存在很大挑战。通过对近期文献的调研,本文主要综述了氧/硫/硒化物负极材料的储钠机理和电化学性能,深入探讨此类材料用作SIBs负极的优势和挑战。针对金属氧/硫/硒化物材料存在的导电性能差、循环过程中颗粒团聚以及缓慢离子扩散动力学等问题,总结了与导电碳复合、结构调控、改善电解液等改性方法,最后对氧/硫/硒化物负极材料的发展前景进行了展望。
Low-cost and environmentally friendly sodium-ion batteries(SIBs)have great application prospects in the next generation of low-speed electric vehicle power and large-scale energy storage systems.The key to promoting the commercial application of SIBs is to develop electrode materials with excellent electrochemical performance and a low-cost.It is important to explore and fabricate appropriate high-performance SIB anodes.Compounds composed of oxygen/sulfur/selenium in group VI A as SIB anodes are low cost and environmentally friendly and have high theoretical capacity and safety,therefore attracting extensive attention from researchers.However,oxide/sulfide/selenide-anode materials cannot meet the rate performance demand due to their low electrical conductivity.In addition,the electrochemical cycling process is accompanied by a huge volume expansion,resulting in the crushing of the electrode,hindering the application of oxides/sulfides/selenides.Examining recent literature,this paper reviews the sodium storage mechanism of oxide/sulfide/selenide-anode materials and discusses their advantages and challenges.Some modification methods,such as composites with conductive carbon,structure control,and electrolyte improvement,are summarized as possible solutions to problems such as low conductivity,self-agglomeration,and sluggish kinetics.Finally,the development prospects of oxides/sulfides/selenides are forecasted for SIB anodes.
作者
位广玲
江颖
周佳辉
王紫恒
黄永鑫
谢嫚
吴锋
WEI Guangling;JIANG Ying;ZHOU Jiahui;WANG Ziheng;HUANG Yongxin;XIE Man;WU Feng(School of Materials Science and Engineering,Beijing Institute of Technology,Beijing 100081,China;Collaborative Innovation Center of Electric Vehicles in Beijing,Beijing 100081,China)
出处
《储能科学与技术》
CAS
CSCD
2020年第5期1318-1326,共9页
Energy Storage Science and Technology