期刊文献+

NASICON结构Li1+xAlxTi2−x(PO4)3(0≤x≤0.5)固体电解质研究进展 被引量:1

Progress of NASICON-structured Li1+xAlxTi2−x(PO4)3(0≤x≤0.5)solid electrolyte
下载PDF
导出
摘要 锂离子电池在生活中的广泛应用大大提高了人们的生活品质。但是由于采用了易燃的有机液体电解质,传统锂离子电池存在安全风险,能量密度也受到了限制。使用固体电解质替代有机液体电解质发展全固态电池有望解决这些问题。在各种固体电解质中,NASICON结构固体电解质Li1+xAlxTi2−x(PO4)3(LATP,0≤x≤0.5)具有离子电导率高、耐环境稳定性好,合成条件温和等优势,因此有广阔的发展前景和应用潜力。本文先从晶体结构、离子扩散机理、合成方法、提升离子电导率的途径4个方面综述了LATP材料的研究进展;另外,电化学稳定性差以及和电极活性材料界面阻抗大的问题限制了LATP固体电解质在全固态锂电池中的应用,所以在后半部分总结了这些关键问题的解决途径和方法。最后指出,界面问题是限制LATP固体电解质在全固态电池中应用的主要问题,还需要发展更好的策略来进一步优化LATP与电极活性材料之间的界面。 The widespread application of lithium-ion batteries greatly improves peoples'quality of life.However,due to the use of flammable organic liquid electrolytes,there is a safety risk with traditional lithium-ion batteries and their energy density is limited.The development of all-solid-state batteries using solid electrolytes is expected to solve these problems.With high ionic conductivity,good environmental stability,and mild synthesis conditions,the NASICON-structured solid electrolyte Li1+xAlxTi2−x(PO4)3(LATP,0≤x≤0.5)is a fairly promising solid electrolyte.This paper first reviews the progress of LATP according to four aspects:Its crystal structure,ionic diffusion mechanism,synthetic methods,and methods to improve its ionic conductivity.In addition,with the electrochemical instability and high interface impedance of the LATP solid electrolyte against electrode active materials limiting its application in all-solid-state lithium batteries,the solutions to these key issues are summarized in the second part of the paper.Finally,it is emphasized that interface problems are the main challenge limiting the application of LATP solid electrolytes in all-solid-state batteries,necessitating the development of better strategies to further optimize the interface between LATP and electrode active materials.
作者 吴洁 江小标 杨旸 吴勇民 朱蕾 汤卫平 WU Jie;JIANG Xiaobiao;YANG Yang;WU Yongmin;ZHU Lei;TANG Weiping(State Key Laboratory of Space Power Technology,Shanghai Institute of Space Power-Sources,Shanghai 200245,China)
出处 《储能科学与技术》 CAS CSCD 2020年第5期1472-1488,共17页 Energy Storage Science and Technology
基金 国家重点研发项目(2018YFB0905400) 上海市启明星计划项目(18QB1402600)。
关键词 LATP固体电解质 离子扩散机理 离子电导率 合成方法 电极/固体电解质界面 LATP solid electrolyte ionic diffusion mechanism ionic conductivity synthetic methods electrode/solid electrolyte interface
  • 相关文献

参考文献2

二级参考文献52

  • 1鞠兰,王严杰,潘颐,冯连芳.PEO-Li_(1.3)Al_(0.3)Ti_(1.7)(PO_4)_3复合聚合物电解质的制备与电导率研究[J].材料科学与工程学报,2004,22(6):867-870. 被引量:5
  • 2Croy Jason R,Abouimrane Ali,Zhang Zhengcheng.Next-generation lithium-ion batteries:The promise of near-term advancements[J].Materials Research Society,2014,39(5):407-414.
  • 3Amine Khalil,Kanno Ryoji,Tzeng Yonhua.Rechargeable lithium batteries and beyond:Progress,challenges,and future directions[J].Materials Research Society,2014,39(5):395-401.
  • 4Aravindan Vanchiappan,Gnanaraj Joe,Madhavi Srinivasan.Lithiumion conducting electrolyte salts for lithium batteries[J].Chem.Eur.,2011,17:14326-14346.
  • 5Thokchom Joykumar S,Chen Christina,Abraham K M,Kuma Binod.High conductivity electrolytes in the PEOx:Li N(SO2CF2CF3)2-Al2O3system[J].Solid State Ionics,2005,176:1887-1893.
  • 6Goodenough B John,Youngsik K.Challenges for rechargeable Li batteries[J].Chem.Mater.,2010,22(3):587-603.
  • 7Kim J,Ji K,Lee J.High conductivity electrolytes in the PEO:Li N(SO2CF2CF3)2-Si O2 system[J].J.Power Sources,2003,415:119-121.
  • 8Nagata K,Nanno T.All solid battery with phosphate compounds made through sintering process[J].Jouranl of Power Sources,2007,174(2):832-837.
  • 9Nishio Y,Kitaura H,Hayash A.All-solid-state lithium secondary batteries using nanocomposites of Ni S electrode/Li2S-P2S5 eletrolyte prepared via mechanochemical reaction[J].Journal of Power Sources,2009,89(1):629-632.
  • 10Inda Y,Takashi K,Baba M.Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics[J].Journal of Power Sources,2007,174(2):741-744.

共引文献7

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部