期刊文献+

基于物体检测及关系推理的视觉问答方法研究 被引量:2

Research on Visual Question and Answering Method Based on Object Detection and Relational Reasoning
下载PDF
导出
摘要 大多数图像描述及视觉问答任务中,主要工作是对图像数据的拟合分类,而缺乏图像中物体之间的关系推理,导致描述图像或回答问题时准确率不高.为解决该问题,本文提出一种基于物体检测及关系推理的视觉问答模型.该模型由上游网络和下游网络两部分组成,上游网络采用极快速区域卷积神经网络,下游网络由多层感知机组成的多模态特征融合推理网络构成.上游网络对图像进行物体检测与特征提取,利用长短期记忆网络对提问的问题进行信息提取以嵌入下游网络;下游网络对问题和图像的特征进行融合和推理,进而得出答案.采用数据集CLEVR进行模型训练与视觉问答测试,实验结果表明,本模型与其他已有模型相比,图像中物体之间关系推理的准确率获得了提高,达到98.96%. In most image description and visual question answering tasks,the main task is to fit and classify the image data.The lack of reasoning relationship between objects in the image leads to low accuracy in describing images or answering questions.Visual question answering model based on object detection and relational reasoning is proposed to overcome this defect.The model is composed of upstream network and downstream network.The upstream network adopts Faster Regional Convolutional Neural Network,and the downstream network consists of Multimodality Feature Fusion Inference Network,and the Network is composed of Multilayer Perceptron.First,image target detection and feature extraction are practiced in the upstream network,and problem information is extracted in Long Short-Time Memory network to embed in the downstream network.Then problem text features and image features are fused and inferred in the downstream network to obtain the answers.Model training and visual question answering test are performed on the dataset CLEVR.The results show that the accuracy of the model is higher than other existing models,the accuracy of inference between objects in the image is improved to 98.96%.
作者 邱真娜 张丽红 陶云松 QIU Zhenna;ZHANG Lihong;TAO Yunsong(College of Physical and Electronic Engineering, Shanxi University, Taiyuan 030006, China)
出处 《测试技术学报》 2020年第5期439-445,450,共8页 Journal of Test and Measurement Technology
基金 山西省研究生创新项目资助项目(2019SY015)。
关键词 深度学习 视觉问答 关系推理 长短期记忆网络 多模态特征融合 deep learning visual question answering relational reasoning long short-term memory network multimodality feature fusion
  • 相关文献

参考文献1

共引文献3

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部