期刊文献+

液相外延法制备金属-有机骨架薄膜及其应用

Liquid phase epitaxial growth of metal-organic frameworks thin films and applications
下载PDF
导出
摘要 金属-有机骨架化合物(MOFs)在微纳米器件、传感器、功能性涂膜和电催化等领域的应用通常要求MOFs生长于各种基底表面形成MOFs薄膜。近年来,制备MOFs薄膜的方法得到了极大的发展,其中液相外延法(LPE)结合自组装单分子层(SAMs)是目前制备高质量MOFs薄膜最重要的技术之一。总结了LPE与SAMs相结合的技术在制备厚度、形貌、晶体取向以及组分可控的MOFs薄膜方面取得的重要成果,介绍MOFs薄膜在气体选择性吸附、光伏器件和电子器件领域的应用。最后提出LPE法制备MOFs薄膜面临的问题以及今后的发展方向,以期MOFs在传感器、光电器件和电催化领域取得更多成果。 The applications of metal-organic frameworks(MOFs)in micro/nano-devices,sensors,functional coating,and electrocatalysis often require MOFs to grow on various substrates in form of MOFs thin films.In recent years,techniques for the fabrication of MOFs thin films have been largely developed,and among them,a method based on the combination of liquid phase epitaxial(LPE)and self-assembled monolayers(SAMs)is particularly interesting owing to the high quality of MOFs thin films.In this paper,we summarize the most important achievements in controlling the thickness,morphology,crystal orientation,and composition of MOFs thin films by combining LPE and SAMs techniques.And then we introduce the applications of MOFs thin films in gas selective adsorption,photovoltaics,and electronics.Finally,the challenges and future developments of MOFs thin films are discussed,and MOFs are expected to achieve more promising results in the fields of sensors,photo-electric devices,and electrocatalysis.
作者 庄金亮 薛云 申妍铭 晏秘 程琥 ZHUANG Jinliang;XUE Yun;SHEN Yanming;YAN Mi;CHENG Hu(Key Laboratory of Functional Materials and Chemistry of Guizhou Province,School of Chemistry and Materials Science,Guizhou Normal University,Guiyang,Guizhou 550025,China)
出处 《贵州师范大学学报(自然科学版)》 CAS 2020年第5期104-118,共15页 Journal of Guizhou Normal University:Natural Sciences
基金 国家自然科学基金(No.21861013) 贵州省科技厅基金项目(No.[2016]1413、[2018]5769) 黔教合KY字(No.[2017]063)。
关键词 金属-有机骨架材料 液相外延法 自组装单分子层 MOFs薄膜 图案化 metal-organic frameworks liquid phase epitaxial self-assembled monolayers MOFs thin films patterning
  • 相关文献

参考文献2

二级参考文献131

  • 1Satishkumar B. C., Thomas P.,Govindaraj A., Rao C. N. R. Y-Junction Carbon Nanotubes. Appl. Phys. Lett., 2000,77,2530.
  • 2Olenyuk B.,WhitefordJ. A., Fechtenkotter A. et al Nature, 1999,398,796.
  • 3Cui S.S.-Y., LoS. M.-F., CharmantJ. P. H. et al Science, 1999,283,1148.
  • 4ZOU Bo(邹勃),ZHANG Li(张丽),GUAN Li-Xin(关立新),CHI Li-Feng(迟力峰),ZHANGXi(张希)Kexue Tongbao( Chinese Science Bulletin), 2001, 46,441.
  • 5SU Wei-Ping, HONG Mao-Chun, WENG Jia-Bao et al Angew. Chem. Int. Ed., 2000, 39,2911.
  • 6HONG Mao-Chun, ZHAO Ying-Jun, SU Wei-Ping et al Angew. Chem. Int. Ed., 2000, 39,2468.
  • 7HONG Mao-Chun, ZHAO Ying-Jun, SU Wei-Ping et al J. Am. Chem. Soc., 2000, 122,4819.
  • 8Corma, A.; Diaz-Cabanas, M. J.; Martinez-Triguero, J.; Rey, F.; Rius, J. Nature 2002, 418, 514-517.
  • 9Castaneda, R.; Corma, A.; Fornés, V.; Rey, F.; Rius, J. J. Am. Chem. Soc. 2003, 125, 7820-7821.
  • 10Wilson, S. T.; Lok, B. M.; Messina, C. A.; Carman, T. R.; Flanigen, E. M. J. Am. Chem. Soc. 1982, 104, 1146-1147.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部