期刊文献+

An efficient cubic trigonometric B-spline collocation scheme for the time-fractional telegraph equation 被引量:1

下载PDF
导出
摘要 In this paper,a proficient numerical technique for the time-fractional telegraph equation(TFTE)is proposed.The chief aim of this paper is to utilize a relatively new type of B-spline called the cubic trigonometric B-spline for the proposed scheme.This technique is based on finite difference formulation for the Caputo time-fractional derivative and cubic trigonometric B-splines based technique for the derivatives in space.A stability analysis of the scheme is presented to confirm that the errors do not amplify.A convergence analysis is also presented.Computational experiments are carried out in addition to verify the theoretical analysis.Numerical results are contrasted with a few present techniques and it is concluded that the presented scheme is progressively right and more compelling.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2020年第3期359-378,共20页 高校应用数学学报(英文版)(B辑)
  • 相关文献

参考文献1

二级参考文献9

  • 1Feller, W., On a generalization of Marcel Riesz' potential and semigroups generated by them, Meddelanden Universitets Matematiska Siminarium, Lund, 21(1952), 73-81.
  • 2Fujita, Y., Integrodifferential equation which interpolates the heat and wave equations, Osaka Journal of Mathematics, 27(1990), 309-321; 797-804.
  • 3Orsingher, E., Probability law, flow functions, maximum distributions of wave-governed random motions and their connections with Kirchoff's law, Stochastic Processes and Their Applications, 34(1990), 49-66.
  • 4Orsingher, E., Motions with reflecting and absorbing barriers driven by the telegraph equation, Random Operators and Stochastic Equations, 3:1(1995), 9-21.
  • 5Riesz, M., L'integrale de Riemann-Liouville et le problème de Cauchy, Acta Mathematica, Lund,81(1948), 1-223.
  • 6Saichev, A. I. & Zaslavsky, G. M., Fractional kinetic equations: solutions and applications, Chaos, 7(1997), 753-764.
  • 7Samko, S. G., Kilbas, A. A. & Marichev, O. I., Fractional integrals and derivatives, Gordon and Breach Science Publishers, Amsterdam, 1993.
  • 8Samorodnitsky, G. & Taqqu, M.S., Stable non-Gaussian random processes, Chapman and Hall, New York 1994.
  • 9Schneider, W. R. & Wyss, W., Fractional diffusion and wave equations, Journal of Mathematical Physics, 30(1989), 134-144.

共引文献3

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部