摘要
将Painlevé方法推广到更一般的形式,可以从给定的低维可积模型中得到无穷多个新的可积模型.新的可积模型与原模型相比都是较高维的,它们保持保角不变性和Painlevé性质.本文主要以KdV、NLS和KP方程为例,运用WTC法、截断展开、领头项分析等方法,给出了(3+1)维可积模型的具体形式.
Extending the Painlevéapproach to a more general form,one can obtain infinitely many new integrable models in the context that they possess conformal invariance and the Painlevéproperty in any space dimensions from a given lower dimensional integrable model.This paper mainly focuses on taking the Korteweg-de Vries,nonlinear Schrödinger and Kadomtsev-Petviashvili equations as simple examples,some explicit(3+1)-dimensional integrable models are given using the methods proposed by Weiss,Tabor,and Carnevale,as well as through truncation expansion and the leading order analysis.
作者
王晓波
贾曼
楼森岳
WANG Xiaobo;JIA Man;LOU Senyue(School of Physical Science and Technology,Ningbo University,Ningbo 315211,China)
出处
《宁波大学学报(理工版)》
CAS
2020年第5期114-120,共7页
Journal of Ningbo University:Natural Science and Engineering Edition
基金
国家自然科学基金(11975131,11675084)
宁波市自然科学基金(2015A610159)
宁波大学王宽诚幸福基金。
关键词
PAINLEVÉ分析
高维可积模型
低维可积模型
Painlevéanalysis
higher dimensional integrable models
lower dimensional integrable models