期刊文献+

分数阶高阶不确定系统的自适应反演滑模同步 被引量:1

Self-Adaptive Back Stepping Sliding Mode Synchronization of Fractional-Order High-Order Uncertain Systems
原文传递
导出
摘要 基于自适应反演滑模同步方法研究分数阶不确定高阶非线性混沌系统的同步问题,给出子系统的Lyapunov函数和虚拟控制,在反演设计中引入滑模函数和控制器及自适应规则得到分数阶不确定非线性混沌系统取得自适应反演滑模同步的充分条件,并把该结论平推到整数阶系统. Synchronization problem of fractional-order uncertain nonlinear system has been studied based on self-adaptive back stepping sliding mode synchronization approaches.And subsystem Lyapunov function was constructed and the virtual input was designed in the back stepping procedure.The sufficient conditions had been arrived for fractional-order uncertain nonlinear systems getting self-adaptive back stepping sliding mode synchronization.And the conclusion was extended to integer-order systems.
作者 范贺花 周永卫 FAN He-hua;ZHOU Yong-wei(College of Mathematics,Zhengzhou University of Aeronautics,Zhengzhou 450015,China)
出处 《数学的实践与认识》 北大核心 2020年第16期219-225,共7页 Mathematics in Practice and Theory
基金 国家自然科学青年基金(11801528) 航空科学基金(2016ZG55019,2017ZD55004) 河南省科技攻关计划(182102110129) 河南省教育厅自然科学基金(16A630061) 河南省高校重点基础研究专项(20ZX003) 河南省大学生创新创业训练计划(S201910485026) 郑州航院青年基金(2017113001)。
关键词 分数阶 不确定 反演滑模 同步 Fractional-order uncertain back stepping sliding mode synchronization
  • 相关文献

参考文献10

二级参考文献116

  • 1卢俊国.Chaotic dynamics and synchronization of fractional-order Genesio-Tesi systems[J].Chinese Physics B,2005,14(8):1517-1521. 被引量:10
  • 2宁娣,陆君安.一个临界系统与Lorenz系统和Chen系统的异结构同步[J].物理学报,2005,54(10):4590-4595. 被引量:30
  • 3马铁东,张化光,王智良.一类参数不确定统一混沌系统的脉冲滞后同步[J].物理学报,2007,56(7):3796-3802. 被引量:18
  • 4Podlubny I.Fractional Differential Equations.New York:Academic Press,1999.
  • 5Hilfer R.Applications of Fractional Calculus in Physics.New Jersey:World Scientific,2001.
  • 6Bagley R L,Calico R A.Fractional order state equations for the control of visco-elastically damped structures.J.Guidance Control Dyn.,1991,14:304-311.
  • 7Friedrich Ch,Braun H.Linear viscoelastic behavior of complex behavior of complex polymeric materials:a fractional calculus approach.Acta Polym.,1995,46:385-390.
  • 8Rossikhin Y A,Shitikova M V.Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass system.Acta Mech.,1997,120:109-125.
  • 9Chen G,Friedman G.An RLC interconnect model based on Fourier analysis.IEEE Trans.Comput.Aided Des.Integr.Circuits Syst.,2005,24:170-183.
  • 10Mandelbrot B,VanNess J W.Fractional brownian motions,fractional noises and applications.Siam Rev.,1968,10:422-437.

共引文献169

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部