期刊文献+

带有相互干扰和时滞的Holling Ⅲ型食饵捕食者系统的全局吸引性

Globally Attractive of a Holling Ⅲ Type Predator-prey System with Mutual Interference and Time Delays
原文传递
导出
摘要 通过使用比较定理和微分不等式技巧,研究带有相互干扰和时滞的HollingⅢ型食饵-捕食者系统的持久性.在此基础上,我们构造合适的Lyapunov函数,获得该系统全局吸引性的充分条件. In this paper,by using the comparison theorem and differential inequality skills,we study the permanence of a Holling Ⅲ type predator-prey system with mutual interference and time delays.Based on the permanence result,by constructing a suitable Lyapunov functional,we eastablish sufficient conditions of globally attractive for the considered system.
作者 吕小俊 高翔 张玮伟 LV Xiao-jun;GAO Xiang;ZHANG Wei-wei(Department of Information,Tourism and Culture College of Yunnan University,Lijiang 674199,China;High School Mathematics Department,Foreign Language School,Mianyang 621000,China;Institute of Preparatory Education,Yunnan Minzu University,Kunming 650504,China)
出处 《数学的实践与认识》 北大核心 2020年第16期278-284,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金(11161025) 云南省教育厅自然科学基金(2020J0908)。
关键词 相互干扰 时滞 HollingⅢ 食饵-捕食者系统 全局吸引性 mutual interference time delays hollingⅢ predator-prey system globally attractive
  • 相关文献

参考文献4

二级参考文献14

  • 1翁佩萱.GLOBAL ATTRACTIVITY IN A PERIODIC COMPETITION SYSTEM WITH FEEDBACK CONTROLS[J].Acta Mathematicae Applicatae Sinica,1996,12(1):11-20. 被引量:5
  • 2H. L. Freedman,V. Sree Hari Rao.The trade-off between mutual interference and time lags in predator-prey systems[J].Bulletin of Mathematical Biology.1983(6)
  • 3Kuang Y. Delay Differential Equations with Applications in Population Dynamics. Boston: Academic Press, 1993.
  • 4Cushing J M. Integrodifferential Equations and Delay Models in Population Dynamics. Lecture Notes in Biomathematics. New York: Springer-Verlag, 1977.
  • 5Clark C W. Mathematical Bioeconomics, Second ed., the Optimal Management of Renewable Re- sources. New York-Toronto: John Wiley and Sons, 1990.
  • 6Fang H, Xiao Y F. Existence of multiple periodic solutions for delay Lotka-Volterra competition patch systems with harvesting. Applied Mathematical Modelling, 2009, 33:1086-1096.
  • 7Zhao K H, Li Y K. Four positive periodic solutions to two species parasitical system with harvesting terms. Computers and Mathematics with Applications, 2010, 59:2703-2710.
  • 8Lin W, Chen L. Positive periodic solutions of delayed periodic Lotlu-Volterra systems. Phys. Lett.A, 2005, 334:273 287.
  • 9Li Y K. Positive periodic solutions of discrete Lotka-Volterra competition systems with state dependent delays. Appl. Math. Comput., 2007, 190:526- 531.
  • 10Li Y K. Positive periodic solutions of periodic neutral Lotka-Volterra systems with state dependent delays. J. Math. Anal., 2007, 330:134-1362.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部