期刊文献+

Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification 被引量:2

下载PDF
导出
摘要 The upsurge of multiple drug resistance(MDR)bacteria substantially diminishes the effectiveness of antibiotic arsenal and therefore intensifies the rate of therapeutic failure.The major factor in MDR is efflux pump-mediated resistance.A unique pump can make bacteria withstand a wide range of structurally diverse compounds.Therefore,their inhibition is a promising route to eliminate resistance phenomenon in bacteria.Phytochemicals are excellent alternatives as resistance-modifying agents.They can directly kill bacteria or interact with the crucial events of pathogenicity,thereby decreasing the ability of bacteria to develop resistance.Numerous botanicals display noteworthy efflux pumps inhibitory activities.Edible plants are of growing interest.Likewise,some plant families would be excellent sources of efflux pump inhibitors(EPIs)including Apocynaceae,Berberidaceae,Convolvulaceae,Cucurbitaceae,Fabaceae,Lamiaceae,and Zingiberaceae.Easily applicable methods for screening plant-derived EPIs include checkerboard synergy test,berberine uptake assay and ethidium bromide test.In silico highthroughput virtual detection can be evaluated as a criterion of excluding compounds with efflux substrate-like characteristics,thereby improving the selection process and extending the identification of EPIs.To ascertain the efflux activity inhibition,real-time PCR and quantitative mass spectrometry can be applied.This review emphasizes on efflux pumps and their roles in transmitting bacterial resistance and an update plant-derived EPIs and strategies for identification.
出处 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2020年第4期277-290,共14页 药物分析学报(英文版)
基金 We are grateful to Chinese Academy of Sciences(CAS)for jointly supports(project No.2018PB0089 to AJS and project No.2019VBA0026 to SDS)under CAS President’s International Fellowship Initiative(CAS-PIFI)projects the Major Project for Special Technology Innovation of Hubei Province(Grant No.2017AHB054 to MG).
  • 相关文献

同被引文献5

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部