期刊文献+

基于深度学习算法的尿素泵体用铝型材表面瑕疵检测 被引量:12

Surface Flaw Detection of Aluminum Profile for Urea Pump Body Based on Deep Learning Algorithm
下载PDF
导出
摘要 尿素泵为机动车尾气后处理系统的核心设备,泵体材料一般为铝型材,在铝型材生产过程中,受工艺等因素的影响会产生各种瑕疵,影响铝型材的质量。传统人工检测,质检的效率和准确率难以满足生产需要。本文将深度学习算法引入到缺陷检测中,结合迁移学习原理,使用小批量数据集,利用改进的YOLO模型进行训练,预测铝型材表面瑕疵。试验结果显示,尽管在小批量训练的条件下,验证集mAP值为87.43%,仍取得了98.2%的准确率,比拟人工检测的准确率,并可以快速、准确的定位缺陷部位。此技术有望革新现有质检流程,自动完成质检任务,保证产品的质量;另外,基于深度学习算法表面缺陷检测方法,鲁棒性好,具有一定的普适性,可以推广到相关的其他应用领域。 Urea pump is the core equipment of vehicle exhaust post-treatment system.Material of pump body is generally aluminum profiles.In the production process of them,due to the influence of process factors,various defects will appear,which will affect the quality of aluminum profiles.Traditional manual detection methods cannot meet the needs of production,because of its efficiency and accuracy.In recent years,deep learning algorithm.The deep learning algorithm was introduced into flaw detection.In combination with transfer learning principle and by using a small-volume dataset,the YOLO model was used for training to predict the defects of aluminum profile.The experimental results show that under the premise of small batch training,the mAP value of verification set was 87.43%,but the accuracy rate of 98.2%was still obtained,which is comparable to the accuracy of manual detection,and the defect can be quickly and accurately located.This technology can be expected to innovate existing quality inspection processes,automatically complete quality inspection tasks and guarantee product quality.In addition,the defect detection method based on deep learning is robust and has certain universality,which can be extended to other related application areas.
作者 陈亮 张浩舟 燕浩 Chen Liang;Zhang Haozhou;Yan Hao(Anhui Academy of Science and Technology,Hefei 230001,China;School of mechanical engineering,Hefei University of Technology,Hefei 230009,China)
出处 《流体机械》 CSCD 北大核心 2020年第8期47-52,77,共7页 Fluid Machinery
关键词 深度学习 迁移学习 表面瑕疵检测 YOLO模型 DCNN deep learning transfer learning defect detection YOLO model DCNN
  • 相关文献

参考文献6

二级参考文献55

  • 1旷玉辉,王如竹.直膨式太阳能热泵热水器的实验研究[J].工程热物理学报,2005,26(3):379-381. 被引量:37
  • 2陈小庆,侯中喜,郭良民,罗文彩.基于NSGA-II的改进多目标遗传算法[J].计算机应用,2006,26(10):2453-2456. 被引量:43
  • 3刘灵芝,张炳力,汤仁礼.某型纯电动汽车动力系统参数匹配研究[J].合肥工业大学学报(自然科学版),2007,30(5):591-593. 被引量:41
  • 4Zhou F F, Shi J Q. Texture feature based on local fourier transform[J]. IEEE International Conference on ImageProcessing, 2001, 17(2): 610-613.
  • 5Castalman K R. Digital Image Processing[M]. Prentice hall, 1998.
  • 6Tsai Du-Ming, Huang Tse-Yun. Automated surface inspection for statistical textures[J]. Image and Vision Computing, 2003, 21(4): 307-323.
  • 7方如明 蔡健荣.计算机视觉技术及其在农业工程中的应用[M].北京:清华大学出版社,1999.45-47.
  • 8Bengio Y. learning Deep Architectures for Al. Foundations andTrends in Machine Learning, 2009 , 2(1): 1-127.
  • 9Hinton G E,SaIakhut(Jinov R R. Reducing the Dimensionality ofData with Neural Networks. Science, 2006, 313(5786) : 504-507.
  • 10Bengio Y, Delalleau 0. On the Expressive Power of Deep Archilec-tures // Proc of the 22nd International Conference on Algorithmiclearning Theory. Ksp[M], Finland,2011: 18-36.

共引文献192

同被引文献120

引证文献12

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部