摘要
将二氧化碳电化学还原为一氧化碳是一种实现碳循环和利用的有效途径。为了利用大量过剩的二氧化碳资源,本文制备了一种简单合成的电催化剂,以生物质壳聚糖为前体制备了含氮多孔碳基底,嵌入均匀分布的非贵金属铜纳米颗粒进行修饰,通过调节铜的负载量,达到充分利用铜金属的活性,从而在电化学二氧化碳还原过程中实现了优异的一氧化碳法拉第效率和选择性。在-0.6V vs. RHE时下,一氧化碳的最大法拉第效率(FE)为78%,并且没有其他有效产物的生成,从而一氧化碳的选择性达到了100%,电流密度为1.9mA/cm2。并且在0.1mol/L KHCO3水溶液中连续电解13h以上,一氧化碳的法拉第效率和选择性基本保持不变,制备的电极材料具有优异的稳定性。
Electrochemical reduction of carbon dioxide to carbon monoxide is an effective way to realize carbon cycle and utilization. In order to utilize a large amount of excess carbon dioxide resources, a simple synthesis electrocatalyst was prepared. The nitrogen-containing porous carbon substrate was prepared with biomass chitosan as the precursor, and the nonprecious metal copper nanoparticles with uniform distribution were embedded for modification. By adjusting the load of copper, the activity of copper metal was fully utilized so that the excellent Faraday efficiency and selectivity of carbon monoxide were realized in the process of electrochemical carbon dioxide reduction. At-0.6 V vs. RHE, the maximum Faraday efficiency(FE) of carbon monoxide was 78% without producing other effective products, and thus the selectivity of carbon monoxide reached 100% with current density of 1.9 mA/cm2. The Faraday efficiency and selectivity of carbon monoxide remained unchanged after electrolysis for more than 13 h in 0.1 mol/L KHCO3 aqueous solution, and the electrode material had excellent stability.
作者
王路喜
杨芳麒
林欢欢
李响
王珺
邓曙光
WANG Luxi;YANG Fangqi;LIN Huanhuan;LI Xiang;WANG Jun;DENG Shuguang(School of Resources Environmental&Chemical Engineering,Nanchang University,Nanchang 330031,Jiangxi,China;National Key Laboratory of Poyang Lake Environment and Resource Utilization(Nanchang University),Ministry of Education,Nanchang 330031,Jiangxi,China;School of Transport and Energy,Arizona State University,AZ 85287,USA)
出处
《化工进展》
EI
CAS
CSCD
北大核心
2020年第9期3685-3691,共7页
Chemical Industry and Engineering Progress
基金
国家自然科学基金(51672186,21908090)
江西省自然科学基金(20192ACB21015)。
关键词
电化学还原
二氧化碳
多孔碳
铜纳米颗粒
法拉第效率
稳定性
electrochemical reduction
carbon dioxide
porous carbon
copper nanoparticles
Faraday efficiency
stability