摘要
变双曲圆弧齿线圆柱齿轮作为一种新型传动方式,为研究几何偏心误差对其传动精度的影响规律,利用基于旋转刀盘加工原理得到的齿面方程,运用MATLAB与UG建立起精确的含几何偏心误差的变双曲圆弧齿线圆柱齿轮的三维模型,运用ADAMS分析得到该齿轮在啮合过程中的转角误差变化规律。得到了其几何偏心误差对传动精度的影响规律,将仿真分析结果与理论计算结果进行对比,得到理论几何偏心误差计算值与实际几何偏心误差仿真计算值相对偏差量较小。验证了基于ADAMS动力学分析齿轮几何偏心误差的可行性,同时验证了传统理论计算法在变双曲圆弧齿线圆柱齿轮上应用的正确性。得到通过测量齿轮间的动态传递误差可以来间接计算变双曲圆弧齿线圆柱齿轮的几何偏心误差值。
As a new transmission mode,the Variational Hyperbola and Circular-arc-tooth-trace is used to study the influence of the geometric eccentricity error on its transmission accuracy.The tooth surface equation based on the machining principle of rotating cutter disk is used to establish a three-dimensional model of Cylindrical Gear with Variational Hyperbola and Circular-arc-tooth-trace with geometric eccentricity error with MATLAB and UG.Using ADAMS analysis,the change law of the angular error of the gear during meshing process is obtained.The influence of geometric eccentricity on the transmission precision is analyzed.Comparing the simulation data with the theoretical calculation results,the relative deviation between the theoretical geometric center deviation and the actual geometric eccentricity error is small.The feasibility of analyzing the kinematic characteristics of the gear based on the ADAMS dynamic analysis method is verified.The correctness of the traditional theoretical calculation method on the Cylindrical Gear with Variational Hyperbola and Circular-arc-tooth-trace is verified.The geometric eccentricity of the Cylindrical Gear with Variational Hyperbola and Circular-arc-tooth-trace can be indirectly calculated by measuring the dynamic transmission error between gears.
作者
陈帅
祝杰
侯力
吴阳
CHEN Shuai;ZHU Jie;HOU Li;WU Yang(School of Manufacturing Science and Engineering,Sichuan University,Sichuan Chengdu 610065,China;Ertan Hydropower Plant,Sichuan Panzhihua 617100,China)
出处
《机械设计与制造》
北大核心
2020年第9期5-8,共4页
Machinery Design & Manufacture
基金
国家自然科技基金资助项目—新型圆弧曲线圆柱齿轮传动应用基础研究(51375320)。
关键词
变双曲圆弧齿线圆柱齿轮
几何偏心误差
转角误差
误差分析
Cylindrical Gear with Variable Hyperbolic Circular-Arc-Tooth-Trace
Geometric Eccentricity Error
Angle Error
Error Analysis