期刊文献+

大数据时代高校学术期刊的挑战与变革

Challenges and Changes of University Academic Journals in Big Data Era
下载PDF
导出
摘要 大数据时代,高校学术期刊面临着众多的问题和挑战。在现有的条件下,应首先运用大数据思维,对选题策划、组稿审稿、编辑加工、出版发行甚至管理模式等各个环节进行优化与整合,并实现全程化的数字出版。当然,一切条件具备时,自建准大数据平台也是一种选择。在内部资源优化与整合的同时,应加强外部的合作与融合,探索刊-刊融合、刊-网融合、刊-网-馆融合等多元化的融合方式。另外,同现有的大数据拥有者进行数据购买或实行数据外包服务来获取大数据,也是一条切实可行的路径。最后,从国家、学校及期刊编辑部三个层面给出了一些建议。 In big data era,university academic journals are faced with various problems and challenges.In order to realize the digital publishing in whole process under the existing conditions,this paper proposes employing big data thinking to optimize and integrateall aspects of edictinglike selecting and planning topics,soliciting and examing contributions,editing and processing manuscripts,publicating and distributing jounals,and applying management mode.It is also an option toestablisha quasi-big data platformif all conditions are right.At the same time of internal resources of optimization and integration,we should strengthen the external cooperation and integration to explore the diversified methods of journal-journal integration,journal-network integration,and journal-network-library integration.In addition,it is also practical and feasible to purchase data with existing big data owners or implement data outsourcing services to obtain big data.Finally,some suggestions are given from three levels of state,university and editorial department.
作者 桂智刚 吴海西 GUI Zhi-gang;WU Hai-xi(Editorial Department of Journal,Xi’an Univ.of Arch.&Tech.,Xi’an 710055,China)
出处 《西安建筑科技大学学报(社会科学版)》 2020年第4期94-100,共7页 Journal of Xi'an University of Architecture & Technology(Social Science Edition)
基金 陕西省出版科学基金项目(17BSC15)。
关键词 大数据时代 高校学术期刊 大数据思维 融合 挑战与变革 big data era university academic journals big data thinking integration challenges and changes
  • 相关文献

参考文献12

二级参考文献74

  • 1蔡雯.媒介融合发展与新闻资源开发[J].西南民族大学学报(人文社会科学版),2006,27(7):126-129. 被引量:49
  • 2[英]维克托·迈尔-舍恩伯格.大数据时代[M].盛杨燕,周涛,译.杭州:浙江人民出版社,2013.
  • 3[英]维克托·迈尔一舍恩伯格,肯尼思·库克耶.大数据时代:生活、:工作与思维的大变革[M].盛杨燕,周涛,译.杭州:浙江人民出版社,2013:27-94.
  • 4徐子沛.大数据[M].桂林:广西师范大学出版社,2013.
  • 5Paul M. Hirsch. Processing Fads and Fashions: An Organization-set Analysis of Cultural Industry Systems. [ J ] American Journal of Sociology, Vol. 77, No. 4( Jan. 1972 ): 639-659.
  • 6[M]Bernard Bull, E. (2014). 10 assessment design tips for in- creasing online student retention, satisfaction and learning. Faculty Fo- cus. Retrieved 2 April 2016, from http://www, facultyfocus, com/arti- cles/online-education/10 -assessment -design-tips-increasing-retention-sat- isfaction-student-learning-online-courses/campaign = FF140203article.
  • 7Duhigg, C. (2012). How companies learn your secrets[DB/ OL] . Nytimes. com. Retrieved 31 March 2016, from http:// www. nytimes, com/2012/O2/19/magazine/shopping-habits, html.
  • 8Mayer-SchOnberger, V., & Cukier, K. (2014). Big data: Arevolution that will transform how we live, work, and think ( First Mari- ner Books edition) [M]. Boston : Mariner Books, Houghton Mifflin Har- court.
  • 9Neal, D. T. , Wood, W. , & Quinn, J. M. (2006). Habits : A repeat performance[J].Current Directions in Psychological Science, 15(4) : 198-202.
  • 10Press, G. (2014). A Very Short History Of Big Data[DB/ OL]. Retrieved 25 June 2016, from http ://www. forbes, com/sites/gil- press/2013/05/09/a-very-short-history-of-big-data/#35 e769d855 da.

共引文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部