期刊文献+

深度学习行人再识别研究综述 被引量:3

Person Re-Identification Research via Deep Learning
原文传递
导出
摘要 行人再识别的主要任务是利用计算机视觉对特定行人进行跨视域匹配和检索。相比于传统算法,由数据驱动的深度学习方法所提取的特征更能表征行人之间的区分性。对行人再识别的背景及研究历史、主要面临的挑战、主要方法、数据集及评价指标进行了梳理和总结。主要从特征表达、局部特征、生成对抗网络三个方面对行人再识别的算法进行分析,列举了行人再识别9个常用数据集、3个评价标准和14种典型方法在Market1501数据集上取得的准确率,最后对行人再识别的未来研究方向进行展望。 The main task of person re-identification is to use computer vision to match and retrieve specific person across view fields.Compared with the traditional algorithm,deep learning is a more appropriate representative method for the discrimination between persons using data-driven extraction features.This study summarized the background and research history,main challenges,main methods,datasets,and evaluation index of person re-identification.The algorithms of person re-identification were mainly analyzed based on three aspects:feature expression,local features,and generative adversarial networks.The accuracy of 9 common datasets,3 evaluation criteria,and 14 typical methods of person re-identification on the Market1501 dataset was listed.Finally,the prospects for the future research direction of person re-identification were established.
作者 卢健 陈旭 罗毛欣 王航英 Lu Jian;Chen Xu;Luo Maoxin;Wang Hangying(School of Electronics and Information,Xi'an Polytechnic University,Xi'an,Shaanxi 710600,Chin)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第16期29-46,共18页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61971139,61471161) 陕西省教育厅专项科学研究计划项目(17JK0332) 陕西省科技厅科技发展计划项目(2011K06-01) 西安市碑林区应用技术研发项目(GX1807)。
关键词 机器视觉 深度学习 行人再识别 特征表达 局部特征 生成对抗网络 machine vision deep learning person re-identification feature expression local features generative adversarial networks
  • 相关文献

参考文献4

二级参考文献39

  • 1Swain M J, Ballard D H. Indexing via color histograms. In: Proceedings of the 3rd International Conference on Computer Vision. Osaka, Japan: IEEE, 1990. 390-393.
  • 2Gray D, Brennan S, Tao H. Evaluating appearance mod- els for recognition, reacquisition, and tracking. In: Pro- ceedings of the 2007 IEEE International Workshop on Performance Evaluation of Tracking and Surveillance. Rio de Janeiro, Brazil: IEEE. 2007. 41-47.
  • 3Farenzena M, Bazzani L, Perina A, Murino V, Cristani M. Person re-identification by symmetry-driven accumu- lation of local features. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, USA: IEEE, 2010. 2360-2367.
  • 4Ma B P, Su Y, Jurie F. BiCov: a novel image representa- tion for person re-identification and face verification. In: Proceedings of the 23rd British Machine Vision Confer- ence. Surrey, UK: IEEE, 2012. 1-6.
  • 5Cheng D S, Cristani M, Stoppa M, Bazzani L, Murino V. Custom pictorial structures for re-identification. In: Pro- ceedings of the 22nd British Machine Vision Conference. Dundee, UK: IEEE, 2011. 749-760.
  • 6Liu C X, Gong S G, Loy C C, Lin X G. Person re- identification: what features are important? In: Pro- ceedings of the 12th European Conference on Computer Vision. Florence, Italy: IEEE, 2012. 391-401.
  • 7Wang X G, Doretto G, Sebastian T, Rittscher J, Tu P. Shape and appearance context modeling. In: Proceed- ings of the llth International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-8.
  • 8Li W, Zhao R, Xiao T, Wang X G. DeepReID: deep fil- ter pairing neural network for person re-identification. In: Proceedings of the 2014 IEEE Conference on Com- puter Vision and Pattern Recognition (CVPR). Colum- bus, USA: IEEE, 2014. 152-159.
  • 9Ahmed E, Jones M, Marks T K. An improved deep learn- ing architecture for person re-identification. In: Proceed- ings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, USA: IEEE, 2015. 3908-3916.
  • 10Zhao R, Ouyang W L, Wang X G. Unsupervised salience learning for person re-identification. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pat- tern Recognition (CVPR). Portland, USA: IEEE, 2013. 3586-3593.

共引文献49

同被引文献14

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部