摘要
拓扑量子材料包括拓扑绝缘体、拓扑半金属和拓扑超导体等,是现代凝聚态物理和材料科学的研究重点.本文旨在简要介绍近年来关于拓扑节线半金属材料的研究结果,并重点阐述本课题组在这一领域的最新研究进展.拓扑节线半金属主要可通过能带的简并和色散两个方面来进行分类.在能带的简并方面本文主要介绍不同对称性保护的节线半金属:在时间反演对称性存在的体系中由点式空间群和非点式空间群保护的节线半金属;在时间反演破缺体系中磁序和拓扑序耦合的节线半金属.在能带的色散关系方面,本文主要介绍具有高次色散的高阶节线半金属和由能带倾斜效应导致的第二类节线半金属.
Topological quantum materials,such as topological insulators,topological semimetals,and topological superconductors,are the research focus of modern condensed matter physics and materials science.The purpose of this article is to give a brief introduction on the research progress of topological nodal line semimetal materials in recent years,and to focus on the latest research progress of our group in this field.Topological semimetals can be classified mainly by two aspects:energy band degeneracy and dispersion.In terms of energy band degeneracy,this article will introduce nodal line semimetals protected by different symmetries including nodal line semimetals protected by symmorphic space groups and non-symmorphic space groups in the system with time reversion symmetry,and nodal line semimetals coupled with magnetic and topological orders without time reversion symmetry,respectively.In terms of energy band dispersion,this article will introduce high-order nodal line semimetals and type-II nodal line semimetals.
作者
张泽英
付波涛
余智明
姚裕贵
ZHANG ZeYing;FU BoTao;YU Zhi-Ming;YAO YuGui(Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement,Ministry of Education,School of Physics,Beijing Institute of Technology,Beijing 100081,China;College of Mathematics and Physics,Beijing University of Chemical Technology,Beijing 100029,China;College of Physics and Electronic Engineering,Center for Computational Sciences,Sichuan Normal University,Chengdu 610068,China)
出处
《中国科学:物理学、力学、天文学》
CSCD
北大核心
2020年第9期3-16,共14页
Scientia Sinica Physica,Mechanica & Astronomica
基金
国家自然科学基金(编号:11734003)
国家重点研发计划(编号:2016YFA0300600)
中国科学院战略先导科技专项(B类)(编号:XDB30000000)
中央高校基本科研业务费专项资金(编号:ZY2018)资助项目。
关键词
拓扑半金属
节线半金属
第一性原理计算
topological semimetal
nodal line semimetal
first-principles calculation