期刊文献+

Mamyshev同步光谱可重叠多波长脉冲光纤激光器 被引量:6

Synchronous Spectral Overlapping Multi-Wavelength Pulsed Fiber Laser Based on Mamyshev Cavity
原文传递
导出
摘要 采用基于多级级联的非线性展宽和偏移滤波的Mamyshev腔,提出了同步光谱可重叠多波长光纤激光器,该单腔环形结构解决了传统多波长激光器中增益竞争和同步输出困难的问题。通过数值仿真,实现了中心波长分别为1035,1040,1045,1050 nm的四波长脉冲的输出,每个波长的脉冲光谱宽度均为7 nm(大于相邻中心波长的间隔),峰值功率(在外部线性压缩之前)为0.9~1.0 kW,脉冲宽度约为0.28 ps。通过优化滤波器,讨论了对应的多波长输出,并分析了波长排列顺序对传输函数以及系统效率的影响。 The Mamyshev cavity based on multi-cascade nonlinear broadening and offset filtering is used to propose a synchronous spectral overlapping multi-wavelength fiber laser.The single-cavity ring structure solves the problems of gain competition and difficulty in synchronization output of traditional multi-wavelength lasers.Through numerical simulation,the output of four-wavelength pulses with central wavelengths of 1035,1040,1045 and 1050 nm is realized.The spectral width of each pulse is 7 nm(greater than the interval between adjacent central wavelengths),the peak power(before external linear compression)is 0.9-1.0 kW,and the pulse width is about 0.28 ps.By optimizing the filter,the corresponding multi-wavelength output is discussed,and the influence of wavelength arrangement order on transmission function and system efficiency is analyzed.
作者 李荣华 马泽航 唐城田 魏淮 Li Ronghua;Ma Zehang;Tang Chengtian;Wei Huai(Key Laboratory of All Optical Network and Advanced Telecommunication Network of Ministry of Education,Institute of Lightwave Technology,Beijing JiaoTong University,Beijing 100044,China)
出处 《中国激光》 EI CAS CSCD 北大核心 2020年第8期8-19,共12页 Chinese Journal of Lasers
基金 国家自然科学基金(61775015) 中国国家留学基金(201907095028)
关键词 激光器 多波长 Mamyshev腔 增益竞争 同步输出 光谱重叠 lasers multi-wavelength Mamyshev cavity gain competitive synchronous output spectral overlap
  • 相关文献

参考文献5

二级参考文献37

  • 1匡芬,叶志清.自激发多波长可开关掺铒光纤激光器[J].光子学报,2012(12):1460-1463. 被引量:8
  • 2王鹏,王兆华,魏志义,郑加安,孙敬华,张杰.用SPIDER法测量飞秒激光脉冲的光谱相位[J].物理学报,2004,53(9):3004-3009. 被引量:18
  • 3田金荣,魏志义,王鹏,赵玲慧,王兆华,张军,韩海年,张杰.亚飞秒被动同步掺钛蓝宝石激光器[J].物理学报,2005,54(1):129-133. 被引量:1
  • 4楼祺洪,周军,朱健强,王之江.高功率光纤激光器研究进展[J].红外与激光工程,2006,35(2):135-138. 被引量:69
  • 5Knight J C. Photonic crystal fibers and fiber lasers (invited)[J]. JOSA B, 2007, 24(8): 1661-1668.
  • 6Baumgartl M, Ortac B, Schreiber T, et al.. Ultrashort pulse formation and evolution in mode-locked fiber lasers[J]. Appl Phys B, 2011, 104(3): 523-536.
  • 7Anderson D, Desaix M, Lisak M, et al.. Wave breaking in nonlinear-optical fibers[J]. JOSA B, 1992, 9(8): 1358-1361.
  • 8Fermann M E, Kruglov V I, Thomsen B C, et al.. Self-similar propagation and amplification of parabolic pulses in optical fibers[J]. Phys Rev Lett, 2000, 84(26): 6010-6013.
  • 9Wise F W, Chong A, Renninger W H. High-energy femtoseeond fiber lasers based on pulse propagation at normal dispersion[J]. Laser & Photon Rev, 2008, 2(1-2): 58-73.
  • 10Ilday F O, Buckley J R, Clark W G, et al.. Self-similar evolution of parabolic pulses in a laser[J]. Phys Rev Lett, 2004, 92(21): 213902.

共引文献18

同被引文献34

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部