期刊文献+

具有奇异的高阶Liénard方程正周期解

Positive Periodic Solutions for High-order Liénard Differential Equations with Singularity
下载PDF
导出
摘要 研究了一类具有奇异的高阶Liénard方程的周期解存在性.利用Mawhin连续定理和不等式分析技巧,获得其正周期解存在性的充分条件,并指出了解的具体存在范围,推广和改进了已有文献的相关结果.最后,给出一个例子表明所得结果的可行性. In this paper,the existence of periodic solutions for a class of singular higher order Liénard equation is studied.By using Mawhin continuity theorem and inequality analysis technique,sufficient conditions for the existence of positive periodic solutions are ob⁃tained,and the existence range of solutions is pointed out.The related results in the literature are generalized and improved.Finally,an ex⁃ample is given to show the feasibility of the results.
作者 姚晓洁 秦发金 YAO xiaojie;QIN Fajin(Guangxi Science&Technology Normal University,Laibin 546199,China)
出处 《广西科技师范学院学报》 2020年第4期136-140,127,共6页 Journal of Guangxi Science & Technology Normal University
基金 广西高校非线性动力系统仿真与控制重点实验室培育基地项目。
关键词 奇异 高阶Liénard方程 Mawhin连续定理 正周期解 singularity high-order Liénard differential equations Mawhin continuation theorem positive periodic solution
  • 相关文献

参考文献3

二级参考文献37

  • 1陈仕洲.具偏差变元高阶Lienard方程周期解存在性[J].纯粹数学与应用数学,2006,22(1):108-110. 被引量:12
  • 2王根强,燕居让.多变时滞n阶非线性中立型泛函微分方程周期解存在性[J].数学物理学报(A辑),2006,26(2):306-313. 被引量:6
  • 3丁同仁关于周期性Brillouin电子束聚焦系统的一个边值问题[J].北京大学学报,1965,1:31-38.
  • 4叶彦谦,王现.在电子聚焦理论中的非线性微分方程[J].应用数学学报,1978,1:13-41.
  • 5ZHANG M. Periodic solutions of Li^nard equations with singular forces of repulsive type[j]. J Math Anal Appl, 1996,203;254-269.
  • 6WANG Z H.Periodic solutions of Li^nard equation with a singularity and deviating argument [j]. Nonlinear Analysis ,2014,16:227-234.
  • 7FONDA A,MAnASEVICH R,ZAN0LIN F. Subharmonic solutions for some second order differential equations with singu-larities[J], SIAM J Math Anal, 1993,24: 1294-1311.
  • 8TORRES P J. Existence of one-signed periodic solutions of some second order differential equations via a Krasnoselskiifixed point theorem[j]. J Differential Equations,2003,190:643-662.
  • 9HABERTS P, SANCHEZ L.Periodic solutions of some Lifinard equations with singularities [j]. Proc Amer Math Soc, 1990,109:1035-1044.
  • 10JIANG D, CHU J,ZHANG M. Multiplicity of positive periodic solutions to superlinear repulsive singular equations [j]. JDifferential Equations,2005,211:282-302.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部