期刊文献+

微喷嘴射流截面能量密度和信息熵 被引量:3

Energy Density and Information Entropy of Micro-nozzle Jet Section
下载PDF
导出
摘要 静电消除器微喷嘴出气量的多少和空气速度,直接决定其一次电离出的正负离子数量和运送离子的能力,从而决定了其除静电的能力。因为微喷嘴出气口间隙只有几十微米,因此用粒子图像测速法研究其工作流场,存在着很大堵塞的风险。在此通过数值仿真方法对微喷嘴工作流场进行了分析,利用射流截面能量密度和信息熵对微喷嘴的射流截面进行了能量均匀性的定量分析研究,并发现微喷嘴出气间隙对空气动能密度分布和信息熵影响明显;小间隙喷嘴更聚能,但能量损失也更大,为后续进一步设计和优化微喷嘴性能提供了可靠的定量评估指标。 The air amount and the air velocity of the static eliminator micro-nozzle determine its ability to remove static electricity.Because the two factors directly determine the number of positive and negative ions which are ionized at one time.The gap between the outlets of the micro-nozzles is only a few tens of micrometers.And there is a great risk of blockage to use the particle image velocimetry(PIV)method to study its working flow field.Here the working flow field of the micro-nozzle is analyzed by numerical simulation method.The energy density and the information entropy are adopted to assess the energy uniformity of the micro-nozzle jet cross-section.During the research,it was found that the air gap of the micro-nozzles has a significant effect on the air kinetic energy density distribution and information entropy.The nozzles with small gaps are more concentrated,but the energy loss is also greater.This study provides a reliable quantitative evaluation index for the further design and optimization of micro-nozzle performance.
作者 李燕 全勇男 蔡茂林 LI Yan;QUAN Yong-nan;CAI Mao-lin(SMC(China)Co.,Ltd.,Beijing 100176;School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191)
出处 《液压与气动》 北大核心 2020年第9期161-167,共7页 Chinese Hydraulics & Pneumatics
关键词 微喷嘴 射流截面 能量密度 湍流能 信息熵 micro-nozzle jet cross section energy density turbulence energy information entropy
  • 相关文献

参考文献7

二级参考文献46

  • 1王东屏,兆文忠,杉山弘,东条启.Study on Internal Supersonic Flows with Pseudo-shock Wave Using Liquid Crystal Flow Visualization Method[J].Chinese Journal of Aeronautics,2005,18(2):102-107. 被引量:2
  • 2张绍坤,王景甫,马重芳,史杨.流体动力式超声波喷嘴雾化特性的实验研究[J].石油机械,2007,35(6):1-3. 被引量:11
  • 3ANSYS Inc., USA, Canonsbrug.FLUENT 6.3's guide, 2006.
  • 4Srieerakul T, Aphornratana S, Chunnanond K. Performance prediction of steam ejector using computational fluid dynamics: Part 2. Flow structure of a steam ejector influenced by operating pressures and geometries[J]. Int. J. Therm. Sci. 2007,46(8):823-833.
  • 5Zhu Y H, Cai W J, Wen C Y et alFuel ejector design and simulation model for anodic recirculation SOFC system [J]. J. Power Sources,2007,173:437-449.
  • 6Wang X D, Dong J L, Numerical study on the performances of steam-jet vacuum pump at different operating conditions[J]. Vacuum,2010:1341-1346.
  • 7Bartosiewicz Y, Aidoun Z, Desevaux P, Mercadier Y. Numerical and experimental investigations on supersonic ejectors [J]. International Journal of Heat and Fluid Flow 2005,26: 56-70.
  • 8索科洛夫 津格尔.喷射器[M].北京:科学出版社,1977..
  • 9Yoko S, Junjiro I. Underexpanded impinging jet (Numerical solution of Euler equations) [ C ]. 日本机械学会论文集 ( B编 ), 1994,60(572): 1139 - 1144(in Japanese).
  • 10Barata J M M. Fountain flows produced by multiple impinging jets in a crossflow[J] . AIAA Journal, 1996, 34(12):2523 ~2530.

共引文献70

同被引文献29

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部