期刊文献+

模块化微反应系统内溴化间甲基苯甲醚连续合成 被引量:6

Continuous synthesis of 4-bromo-3-methylanisole in modular microreaction system
下载PDF
导出
摘要 根据微化工技术发展的主要趋势,针对4-溴-3-甲基苯甲醚间歇非均相合成技术存在的问题,以微筛孔反应器与玻璃微珠填充床为核心功能微设备单元构建了模块化微反应系统,并在此模块化微反应系统内对液-液非均相连续溴化合成4-溴-3-甲基苯甲醚开展研究。通过优化操作条件,在溴浓度(xBr2)为17.5%(质量分数)、溴与间甲基苯甲醚摩尔比(nBr2/nM)为1.01、反应起始温度(T)为0℃、停留时间为0.78 min条件下,4-溴-3-甲基苯甲醚的收率大于98%,多溴代副产物的含量仅为1%。与传统间歇溴化反应相比,模块化微反应系统内连续溴化反应具有十分明显的优势:可将间歇过程连续化,在保证安全的基础上极大地提升了反应的效率(时空收率为6.5×10^4 kg/(m^3·h));另外,该过程是由传质控制的,微反应器的传质性能优异,可极大地改善产品的选择性(多溴代副产物的量减少50%)。该研究为4-溴-3-甲基苯甲醚的连续高效安全合成提供了技术和设备依据。 With the development of microreaction technology and the key issues of liquid-liquid batch bromination process for the synthesis of 4-bromo-3-methylanisole,a modular microreaction system was constructed by taking microreactor and microbead-packed bed as the major functional microdevice units to intensify the bromination of methylanisole.And in this modular microreaction system,the liquid-liquid heterogeneous continuous bromination of 4-bromo-3-methylanisole was studied.The following optimized conditions were obtained,concentration of Br2(xBr2):17.5 wt%,molar ratio of Br2 to methylanisole(nBr2/nM):1.01,initial reaction temperature(T):0℃,residence time(τ):0.78 min,with yield of 4-bromo-3-methylanisole more than 98%,and percentage of polybrominated side product less than 1%.Comparing with the conventional batch process,the continuous microreaction technology has obvious advantages.For example,it can change the traditional batch process to a continuous one with a significant increase of productivity(space time yield:6.5×10^4 kg/(m^3·h)).Besides,since this process is mainly controlled by mass transfer,the modular microreaction system with excellent mass transfer could reduce 50%of polybrominated side product.The study might provide a good foundation for the continuously controllable synthesis of 4-bromo-3-methylanisole in safety.
作者 谢沛 王凯 邓建 骆广生 XIE Pei;WANG Kai;DENG Jian;LUO Guangsheng(The State Key Laboratory of Chemical Engineering,Tsinghua University,Beijing 100084,China)
出处 《化工学报》 EI CAS CSCD 北大核心 2020年第9期4168-4176,共9页 CIESC Journal
基金 国家重点研发计划项目(2017YFB0307102) 自然科学基金重大项目(21991100,21991104)。
关键词 微反应器 静态混合器 间甲基苯甲醚 溴化反应 连续合成 过程控制 microreactor static mixer methylanisole bromination continuous synthesis process control
  • 相关文献

参考文献6

二级参考文献131

  • 1李少伟,陈桂光,骆广生.膜分散小型反应器制备ZrO2纳米颗粒的实验研究[J].过程工程学报,2004,4(z1):408-412. 被引量:8
  • 2陈桂光,骆广生,杨雪瑞,孙怡文,汪家鼎.微混合沉淀技术制备纳米TiO_2颗粒[J].无机材料学报,2004,19(5):1163-1167. 被引量:5
  • 3Nisisako T, Torii T, Higuchi T. Droplet formation in a microchannel network. Lab Chip, 2002, 2 (1) : 24-26.
  • 4Anna S L, Bontoux N, Stone H A. Formation of dispersions using " flow focusing " in microchannels. Appl. Phys. Lett. , 2003, 82 (3): 364-366.
  • 5Xu J H, Li S W, Lan W J, Luo G S. Microfluidie approach for rapid interracial tension measurement. Langmuir, 2008, 24 (19): 11287-11292.
  • 6Link D R, Anna S L, Weitz D A, Stone H A. Geometrically mediated breakup of drops in microfluidic devices. Phys. Rev. Lett., 2004, 92 (5): 054503.
  • 7Xu J H, Li S W, Chen G G, Luo G S. Formation of monodisperse microbubbles in a microfluidic device. AIChE J., 2006, 52 (6): 2254-2259.
  • 8Kim H, Luo D, Link D, Weitz D A, Marquez M, Cheng Z D. Controlled production of emulsion drops using an electric field in a flow-focusing microfluidic device. Appl. Phys. Lett., 2007, 91 (13): 133106.
  • 9Tan J, Xu J H, Li S W, Luo G S. Drop dispenser in a cross-junction microfluidic device: scaling and mechanism of break-up. Chem. Eng. J. , 2008, 136 (2/3) : 306-311.
  • 10Humphry K J, Ajdari A, Fernandez Nieves A, Stone H A, Weitz D A. Suppression of instabilities in multiphase flow by geometric confinement. Phys. Rev. E, 2009, 79 (5): 056310.

共引文献86

同被引文献61

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部