期刊文献+

基于3D CNN的人体动作识别研究 被引量:9

Human action recognition based on 3D CNN
下载PDF
导出
摘要 在现实的生活视频中,检测人体动作以及分类时,常常会出现视频背景复杂、模糊,以及因人多导致多种动作行为同时出现的问题,而致使检测和判别某种行为结果出现偏差。因此文中针对2D CNN对单个帧进行提取特征却没有包含实际视频中连续多帧之间编码的运动信息,提出一种基于三维卷积神经网络识别方法,旨在更好地捕获视频连续帧中隐藏的时间和空间信息。实验结果表明,与现有的几类方法相比,所提方法识别率得到较为明显的提升,验证了该方法的有效性和鲁棒性。 In real⁃life video detection and classification,the video background is complex and fuzzy,as well as many people lead to a variety of action behavior problems at the same time,which causes the deviation of detection and discrimination of a certain behavior results.In allusion to the problem that feature extraction is conducted by 2D CNN from a single frame,but the motion information encoded between consecutive frames is not included,a neural network recognition method based on 3D convolution is proposed to better capture the hidden time and space information in consecutive frames of video.The experimental results show that,in comparison with the existing methods,the recognition rate of this method is significantly improved,and the effectiveness and robustness of the proposed method are verified.
作者 朱云鹏 黄希 黄嘉兴 ZHU Yunpeng;HUANG Xi;HUANG Jiaxing(School of Mechanical Engineering,Nantong University,Nantong 226019,China)
出处 《现代电子技术》 北大核心 2020年第18期150-152,156,共4页 Modern Electronics Technique
基金 国家自然科学基金青年基金项目(51405246) 南通市科技局项目(CP12014001,MS12017017-7)。
关键词 人体动作识别 三维卷积神经网络 特征提取 模型训练 深度学习 实验对比 human action recognition 3D convolution neural network feature extraction model training deep learning experimental comparison
  • 相关文献

参考文献3

二级参考文献21

  • 1蓝荣神.人体运动捕获数据的建模与重用研究[D].南京:南京理工大学,2013.
  • 2MOLLER M, RODER T, CLAUSEN M, et al. Documentation mocap database HDM 05 [D]. Germeny: Universitat Bonn, 2007.
  • 3WU S, LI Y, ZHANG J. A hierarchical motion trajectory signa- ture descriptor; proceedings of the robotics and automation [C]// Proceedings of 2008 IEEE International Conference on ICRA.[S.L]: IEEE, 2008: 3070-3075.
  • 4YANG J, LI Y, WANG K. A new descriptor for 3D trajectory recognition via modified CDTW [C]// proceedings of 2010 IEEE International Conference on the Automation and Logistics (ICAL). [S.1.]: IEEE, 2010: 37-42.
  • 5WANG H, KLASER A, SCHMID C, et al. Action recognition by dense trajectories/C]//Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). [S.1.]: IEEE, 2011: 3169-3176.
  • 6WANG J, LIU Z, WU Y, et al. Mining actionlet ensemble for action recognition with depth cameras [C]// proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recog- nition (CVPR). [S.I.]: IEEE, 2012: 1290-1297.
  • 7XIA L, CHEN C-C, AGGARWAL J. View invariant human ac- tion recognition using histograms of 3d joints [C]// proceedings of 2012 IEEE Computer Society Conference on the Computer Vision and Pattern Recognition Workshops (CVPRW). IS.1.]: IEEE, 2012: 20-27.
  • 8HUSSEIN M E, TORKI M, GOWAYYED M A, et al. Human action recognition using a temporal hierarchy of covariance de- scriptors on 3d joint locations [C]// proceedings of the Twenty- third International Joint Conference on Artificial Intelligence. USA: AAAI Press, 2013: 2466-2472.
  • 9GOWAYYED M A, TORKI M, HUSSEIN M E, et al. Histo- gram of oriented displacements (HOD) : describing trajectories of human joints for action recognition [C]// proceedings of the Twenty-third International Joint Conference on Artificial Intelli- gence. USA: AAAI Press, 2013: 1351-1357.
  • 10HUANG G-B, ZHU Q-Y, SIEW C-K. Extreme learning ma- chine: a new learning scheme of feedforward neural networks [C]// Proceedings of 2004 IEEE International Joint Conference on Neural Networks. [S.1.]: IEEE 2004: 985-990.

共引文献20

同被引文献49

引证文献9

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部