期刊文献+

两水平扩大设计基于中心化L2-偏差的均匀性

Uniformity of Two-Level Combined Designs Under Centered L2-Discrepancy
下载PDF
导出
摘要 基于中心化L2-偏差讨论了两水平扩大设计的均匀性,获得了两水平扩大设计中心化L2-偏差的一个新的下界,该下界可作为寻找最优折叠反转方案的一个基准. The uniformity of combined designs under centered L2-discrepancy are discussed,and some lower bounds of centered L2-discrepancy of the combined designs are provided,which can be used as a benchmark for searching optimal foldover plans.Finally,some numerical examples are provided to illustrate the theoretical results.
作者 李洁 欧祖军 LI Jie;OU Zujun(College of Mathematics and Statistics, Jishou University, Jishou 416000, Hunan China)
出处 《吉首大学学报(自然科学版)》 CAS 2020年第2期9-14,共6页 Journal of Jishou University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(11701213,11961027,11561025) 湖南省自然科学基金资助项目(2017JJ2218,2017JJ3253) 湖南省教育厅重点项目(18A284) 湘西州科技创新计划项目(2018SF5022,2018SF5023)。
关键词 中心化L2偏差 折叠反转 扩大设计 下界 centered L2-discrepancy foldover combined design lower bound
  • 相关文献

参考文献4

二级参考文献18

  • 1FANG Kaitai QIN Hong.Uniformity pattern and related criteria for two-level factorials[J].Science China Mathematics,2005,48(1):1-11. 被引量:16
  • 2Box G E P,Hunter W G,Hunter J S.Statistics for Experimenters.New York:Wiley,1978.
  • 3Chatterjee K,Fang K T,Qin H.Uniformity in factional designs with mixed levels.J Statist Plann Infer,2005,128:593 607.
  • 4Fang K T,Lin D K J,Qin H.A note on optimal foldover design.Statistics & Probability Letters,2003,62:245-250.
  • 5Fang K T,Lu X,Winker P.Lower bounds for centered and wrap-around L2-discrepancies and construction of uniform designs by threshold accepting.J Complexity,2003,19:692-711.
  • 6Fang K T,Ma C X,Mukerjee R.Uniformity in Fractional Factorials.Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing.Berlin:Springer-Verlag.
  • 7Fang K T,Mukerjee R.A connection between uniformity and aberration in regular fractions of two-level factorials.Biometrika,2000,87:193-198.
  • 8Fang K T,Tang Y,Yin J X.Lower bounds of various criteria in experimental designs.J Statist Plann Infer,2008,138:184-195.
  • 9Hickernell F J.A generalized discrepancy and quadrature error bound.Mathematics of Computation,1998,67:299-322.
  • 10Li H,Mee R W.Better foldover fractions for resolution Ⅲ 2^k-p designs.Technometrics,2002,44:278-283.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部