期刊文献+

Evaluation on the interface characteristics,thermal conductivity,and annealing effect of a hot-forged Cu-Ti/diamond composite 被引量:6

原文传递
导出
摘要 A Cu-1.5 wt.%Ti/Diamond(55 vol.%)composite was fabricated by hot forging from powder mixture of copper,titanium and diamond powders at 1050?C.A nano-thick TiC interfacial layer was formed between the diamond particle and copper matrix during forging,and it has an orientation relationship of(111)TiC//(002)Cu&[110]TiC//[110]Cuwith the copper matrix.HRTEM analysis suggests that TiC is semicoherently bond with copper matrix,which helps reduce phonon scattering at the TiC/Cu interface and facilitates the heat transfer,further leading to the hot-forged copper/diamond composite(referred as to Cu-Ti/Dia-0)has a thermal conductivity of 410 W/m K,and this is about 74%of theoretical thermal conductivity of hot-forged copper/composite(552 W/m K).However,the formation of thin amorphous carbon layer in diamond particle(next to the interfacial TiC layer)and deformed structure in the copper matrix have adverse effect on the thermal conductivity of Cu-Ti/Dia-0 composite.800℃-annealing eliminates the discrepancy in TiC interface morphology between the diamond-{100}and-{111}facets of Cu-Ti/Dia-0 composite,but causes TiC particles coarsening and agglomerating for the Cu-Ti/Dia-2 composite and interfacial layer cracking and spallation for the Cu-Ti/Dia-1 composite.In addition,a large amount of graphite was formed by titanium-induced diamond graphitization in the Cu-Ti/Dia-2 composite.All these factors deteriorate the heat transfer behavior for the annealed Cu-Ti/Dia composites.Appropriate heat treatment needs to be continually investigated to improve the thermal conductivity of hot-forged CuTi/Dia composite by eliminating deformed structure in the copper matrix with limit/without impacts on the formed TiC interfacial layer.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第14期7-14,共8页 材料科学技术(英文版)
基金 supported by the Air Force Office of Scientific Research under award number FA2386-17-14025。
  • 相关文献

同被引文献31

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部