期刊文献+

Deformation twinning in equiaxed-grained Fe-6.5 wt.%Si alloy after rotary swaging

原文传递
导出
摘要 Tensile behavior of an equiaxed-grained Fe-6.5 wt.%Si alloy,which was deformed intoφ6 mm bar by hot rotary swaging,was investigated at various temperatures(300–400℃)and stretching rates(0.42–1 mm/min).The results revealed an enhancement in the intermediate-temperature tensile ductility after heat treatments.Deformation twinning was found in the equiaxed-grained Fe-6.5 wt.%Si bars during the tensile test,and heat treatments can enhance the deformation twinning.More twins can be observed in the necking areas than other regions.The high Schmid factor values above 0.4 after heat treatments demonstrated that deformation twinning can easily occur in the equiaxed-grained Fe-6.5 wt.%Si alloy.Higher deformation temperatures,higher strain rates,and larger degree of order suppressed the formation of deformation twinning,while the grain sizes had little effect on the deformation twinning.The twinning stress of the Fe-6.5 wt.%Si alloy increased with the increasing grain size,which did not agree with the Hall–Petch type relationship.The deformation twinning resulted in the improved ductility of the Fe-6.5 wt.%Si alloy.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第14期25-34,共10页 材料科学技术(英文版)
基金 financially supported by the National Natural Science Foundation of China(Nos.51471031 and U1660115) the State Key Laboratory for Advanced Metals and Materials(No.2016Z-17)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部