期刊文献+

基于量子粒子群算法的大型阵稀疏优化方法 被引量:3

Sparse Optimization Method for Large Arrays Based on Quantum Particle Swarm Optimization
下载PDF
导出
摘要 本文提出了一种基于量子粒子群算法(quantum particle swarm optimization,QPSO)的大型阵稀疏优化方法。该方法在约束主瓣宽度的条件下,以阵列的阵元位置和节点的相位中心为优化参量,以方向图的峰值副瓣电平为优化目标,有效结合了QPSO算法,并将其应用于大型阵的稀疏优化。相对于传统稀疏优化方法,本文所提方法不受更新速度和轨迹的约束,并提高了全局搜索能力、加快了收敛速度。仿真结果验证了该方法的有效性。 In this paper, we propose a sparse optimization method for large arrays based on Quantum Particle Swarm Optimization(QPSO). Under the constraint of the main lobe width, this method takes the array element position and the node phase center as optimization parameters, and uses the peak side-lobe level of the pattern as the optimization target. It effectively combines the QPSO algorithm and will be applied for sparse optimization for large arrays. Compared with the traditional sparse optimization method, the method proposed in this paper is not restricted by the update speed and trajectory, and it improves the global search ability and accelerates the convergence speed.Simulation results verify the effectiveness of the method.
作者 郭玉霞 张艳艳 邢金凤 袁晓垒 Guo Yuxia;Zhang Yanyan;Xing Jinfeng;Yuan Xiaolei(China Aviation Missile Academy,Luoyang 471009,China;Aviation Key Laboratory of Science and Technology on Airborne Guided Weapons,Luoyang 471009,China;Xidian University,Xi’an 710071,China)
出处 《航空科学技术》 2020年第8期57-62,共6页 Aeronautical Science & Technology
关键词 QPSO 阵元位置 相位中心 峰值副瓣电平 稀疏优化 QPSO array position phase center peak side-lobe level sparse optimization
  • 相关文献

参考文献10

二级参考文献113

  • 1Adelman L M . Molecular computation of solutions to combinatorial problems [ J ]. Science, 1994,266 : 1021 - 1024.
  • 2Lipton R J. DNA solution of hard computation problems[ J ]. Science, 1995,268 (4) :542-545.
  • 3Ouyang Qi. DNA solution of the maximal clique problem[ J]. Science, 1997,278(17) :446-449.
  • 4Braich R S,Chelyapov N,Johnson C. Solution of a 20-variable 3-SAT problem on a DNA computer [ J ]. Science,2002,296:499-502.
  • 5Faulhammer D,Cukras A R, Lipton R J, et al. Molecular computation: RNA solutions to chess problems [C]//Proc Natl Acad Sci, USA, 2000,97 : 1385-1389.
  • 6Frutos A G, Liu Qing-hua,Thiel A T, et al. Demonstration of a word design strategy for DNA computing on surface[ J]. Nucleic Acids Research, 1997,25 :4748-4757.
  • 7Garzon M, Deaton R, Nino L F,el al. Genome encoding for DNA computing [C]//The Third DIMACS Workshop on DNA-based Computing, University of Pennsylvania, 1999 : 230-237.
  • 8Tanaka F, Nakatsugawa M, Yamamoto M, et al. Towards a general purpose sequence design system in DNA computing [ C ]//Proceedings of the 2002 Congress on Evolutiaonry Computing, CEC'02, 2002: 73 -78.
  • 9Feldkamp U, Rauhe H, Banzhaf W. Software tools for DNA sequence design[ J ]. Genetic Programming and Evolvable Machines, 2003,4 (2) :153-171.
  • 10Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proe of IEEE Int Conf on Neural Network. Piseataway: IEEE, 1995: 1942-1948.

共引文献167

同被引文献38

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部