期刊文献+

基于多隔离策略的新冠肺炎疫情建模及分析 被引量:7

Modeling and Analysis of COVID-19 Based on Multi-isolation Strategy
下载PDF
导出
摘要 针对已经爆发的新冠肺炎疫情,考虑多隔离措施建立了非线性传染病模型来研究新冠肺炎疫情的趋势.利用新冠肺炎疫情的全国数据与仿真实验结果的对比拟合,说明了隔离措施对于新冠肺炎防控的重要性.结果表明:如果隔离措施晚执行一周,那么整个疫情的感染人数就将增加近7倍.此外,针对湖北省新增临床确诊病例的措施,进行了仿真实验分析,结果表明:该措施有效地解决了之前可能存在漏诊病例的问题,并可以大幅加快疫情的消亡速度.后续官方公布的实际数据也验证了本文的仿真结果. Aiming at the outbreak of COVID-19(corona virus disease 2019),considering multiisolation measures,a non-linear infectious disease model was established to study the trend of COVID-19.Comparing the data in China of the COVID-19 with the results of simulation experiments,the isolation measures are important for the prevention and control of COVID-19.The results showed that if the isolation measures were implemented one week later,the number of infected persons in the entire epidemic would increase almost 7 times.In addition,the measure for newly confirmed clinical cases in Hubei Province is analyzed by simulation experiments.The results showed that the measure effectively solved the problem of previously missed cases and can greatly speed up the extinction of the epidemic.Then,the subsequent official data of COVID-19 also agreed with the simulation results.
作者 付强 姚羽 FU Qiang;YAO Yu(School of Computer Science&Engineering,Northeastern University,Shenyang 110819,China)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第9期1239-1243,共5页 Journal of Northeastern University(Natural Science)
基金 中央高校基本科研业务费专项资金资助项目(N181606001,N2016011,N2024005-1) 辽宁省重点研发计划项目(2019JH2/10100019)。
关键词 新冠肺炎 传染病模型 基本再生数 多隔离策略 模拟仿真 COVID-19 epidemic model basic reproduction number multi-isolation strategy simulation
  • 相关文献

参考文献2

二级参考文献12

  • 1Allen L.Some discrete-time SI,SIR,and SIS epidemic models[J].Math Biosci,1994,124:83-105.
  • 2Castillo-Chavez C,Yakubu AA.Discrete-time SIS models with complex dynamics[J].Nonliear Anal.,2001,47:4753-4762.
  • 3Cao H,Zhou YC,Song B.Complex dynamics of discrete SEIS models with simple demography[J].Discrete Dyn Nat Soc,2011,doi:10.1155/2011/653937.
  • 4Zhou YC,Ma ZE,Brauer F.A discrete epidemicmodel for SARS transmission and control in China[J].Mathematical and Computer Modelling,2004,40:1491-1506.
  • 5Zhou YC,et al.Projection of tuberculosis incidence with increasing immigration trends[J].J Theoretical Biology,2008,254:215-228.
  • 6Cao H,Zhou YC.The discrete age-structured SEIT model with application to tuberculosis transmission in china[J].Mathematical and Computer Modelling,2012,55:385-395.
  • 7Capasso V,Serio G.A generalization of Kermack-Mckendrick deterministic epidemic model[J].Math.Biosci.,1978,42(1-2):43-61.
  • 8Zhao X Q.Asymptotic behavior for asymptotically periodic semiflows with applications[J].Commun Appl Nonlinear Anal,1996,3:43-66.
  • 9Allen L,van den Driessche P.The basic reproduction number in some discrete-time epidemic models[J].Journal of Difference Equations and Applications,2008,14:1127x1147.
  • 10Grandmonet JM.Nonlinear difference equations,bifurcations and chaos:.An Introduction[J].Research in Economics,2008,62:120-177.

共引文献173

同被引文献64

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部