期刊文献+

密集杂波环境下的简化JPDA多目标跟踪算法 被引量:8

A Simplified JPDA Multi-target Tracking Algorithmfor Dense Clutter Environment
下载PDF
导出
摘要 为简化联合概率数据关联算法(Joint Probabilistic Data Association,JPDA)的计算复杂度,增强JPDA算法的实时性,设计了一种新的JPDA简化算法。首先根据目标航迹与量测之间的关联规则,定义了一种新的计算关联概率的方法,之后分析公共量测对目标的影响,引入公共量测影响因子修正关联概率。该算法不用进行确认矩阵拆分,有效解决了在密集杂波环境下因回波密度增加而造成的计算上的组合爆炸问题。仿真结果表明,简化的JPDA算法能够在保持对目标有效跟踪的情况下,大大缩短计算时间,提高算法的实时性。 To simplify the computational complexity of Joint Probabilistic Data Association(JPDA)and enhance the real-time performance of JPDA algorithm,a new simplified JPDA algorithm was proposed in this paper.Firstly,according to the association rules between the trajectory and the measurement of the target,a new method to calculate the simple association probability is defined.Then,the influence of the public measurement on the target is analyzed to modify the association probability.The algorithm does not need to split the confirmation matrix,and the problem of combinatorial explosion caused by the increase of echo density in the dense clutter environment can be effectively solved.The simulation results show that the simplified JPDA algorithm can greatly shorten the computation time and improve the real-time performance while keeping effective tracking of the target.
作者 盛涛 夏海宝 杨永建 肖冰松 Sheng Tao;Xia Haibao;Yang Yongjian;Xiao Bingsong(Aeronautics Engineering College,Air Force Engineering University,Xi’an,Shaanxi 710038,China)
出处 《信号处理》 CSCD 北大核心 2020年第8期1280-1287,共8页 Journal of Signal Processing
基金 航空科学基金(20175596020)。
关键词 多目标跟踪 JPDA 关联概率 公共量测 multi-target tracking JPDA associated probability public measurement
  • 相关文献

参考文献8

二级参考文献39

  • 1潘泉,张洪才,向阳朝,王培德.组合式快速JPDA算法[J].航空学报,1994,15(5):558-563. 被引量:6
  • 2Weihua QIN,Fei HU,Chaoyin QIN.A new fast algorithm for multitarget tracking in dense clutter[J].控制理论与应用(英文版),2005,3(4):383-386. 被引量:1
  • 3丁振,张洪才,戴冠中.扩展概率数据关联新算法[J].西北工业大学学报,1996,14(1):49-53. 被引量:4
  • 4Yaakov Bar-Shalom, "Multitarget-Multisensor Tracking: Applications and Advances", Volum Ⅰ, Ⅱ, Artech House 1990, 1992.
  • 5Y. Bar-Shalom, T. E. Fortmann, "Tracking and Data Association", Academic Press, 1988.
  • 6SONG T L, integrated International Turkey, 2013 KIM H W, and MUSICKI D. Iterative joint probabilistic data association[C]. 16th Conference on Information Fusion, Istanbul, 1714-1720.
  • 7MUSICKI D and EVANS R. Multi-scan multi-target tracking in clutter with integrated track splitting filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(4): I432-1447. doi: 10.1109/TAES.2007.4441748.
  • 8BARSHALOM Y and FORTMAN T E. Tracking and Data Association[M]. New York: Academic Press, 2011: 3-7.
  • 9PARK C, WOEHL T J, EVANS J E, et al. Minimum cost multi-way data association for optimizing multitarget tracking of interacting objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3):611-624. doi: 10.1109/TPAMI.2014.2346202.
  • 10AZIZ A M. A novel all-neighbor fuzzy association approach for tracking in a cluttered environment[J]. Signal Processing, 2011, 91- 2001-2015. doi: doi:10.1016/j.sigpro.2011.03.007.

共引文献88

同被引文献57

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部