期刊文献+

基于机器学习的军事装备知识分类方法 被引量:3

Knowledge Classification Method for Military Equipment Based on Machine Learning
下载PDF
导出
摘要 基于开源获取的军事百科知识提取知识中关键特征并赋予特征权重,分别以词频-逆文档频率(TF-IDF)法和词向量(Word2Vec)作为文本表征手段,采用K最近邻(KNN)、支持向量机(SVM)、神经网络及其他机器学习算法开展军事装备知识分类研究。提出了装备知识大类(装备、地点和部队等)、装备目录层级小类2级分类模式,取得了较好的分类结果;比较了各算法的优劣,有助于形成更高效、准确的军事装备知识模型,可支撑军事装备知识图谱的构建和应用。 Based on the military encyclopedia knowledge acquired from open source,the key features of knowledge are extracted and the feature weights are given.Taken the term frequency-inverse document frequency(TF-IDF)algorithm and Word2 Vec as the text representation means,using K-nearest neighbor(KNN),support vector machine(SVM),neural network and other machine learning algorithms,the knowledge classification research of military equipment is carried out.The two-level classification mode including the first type of the equipment knowledge and the second type of the equipment catalog level are presented,and good classification results are achieved.The advantages and disadvantages of each algorithm are compared.It’s helpful to form a more efficient and more accurate military equipment knowledge model,and it can support the construction and application of the military equipment knowledge graph.
作者 陈奡 谢俊杰 赵梅 汤杰 CHEN Ao;XIE Junjie;ZHAO Mei;TANG Jie(The 28th Research Institute of China Electronics Technology Group Corporation,Nanjing 210007,China)
出处 《指挥信息系统与技术》 2020年第4期34-39,共6页 Command Information System and Technology
基金 航天系统部装备部“十三五”预研课题资助项目。
关键词 军事装备 机器学习 文本分类 神经网络 military equipment machine learning text classification neural network
  • 相关文献

参考文献14

二级参考文献100

  • 1姜丽红,徐博艺,席俊红.基于案例推理的过滤算法及智能信息推荐系统[J].清华大学学报(自然科学版),2006,46(z1):1074-1077. 被引量:10
  • 2游兰,彭庆喜,王时绘.基于Web使用挖掘的个性化站点研究[J].江汉大学学报(自然科学版),2005,33(3):51-54. 被引量:1
  • 3杨立,左春,王裕国.基于语义距离的K-最近邻分类方法[J].软件学报,2005,16(12):2054-2062. 被引量:31
  • 4沈达阳,孙茂松,黄昌宁.汉语自动分词和词性标注一体化系统[J].中文信息,1996,13(5):17-19. 被引量:5
  • 5梁南元.书面汉语自动分词系统—CDWS[J].中文信息学报,1987,(2):44-52.
  • 6Gerard Salton, Michael J McGill. Introduction to Modem Information Retrieval[ M]. McGraw Hill Int Book, 1983.
  • 7侯汉清,薛春香.Construction of Knowledge Base for Automatic Indexing and Classification Based on Chinese Library Classification [ R ]. Fifth Agriculture Ontology Service Workshop, Beijing ,2004.
  • 8William W Cohen, Yoram Singer. Context - sensitive Learning Methods for Text Categorization [ J]. ACM Trans on Info Sys, 1999, 17 (2) : 141 -173.
  • 9军事信息资源分类法编制委员会.军事信息资源分类法[M].北京:军事科学出版社,2005:737-738.
  • 10北京大学计算语言学研究所.汉语文本切分与词性标注系统[P].http://icl.pku.edu.cn/icl_res/segtag98/.

共引文献83

同被引文献17

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部