期刊文献+

一类Ostrowski型双边不等式 被引量:7

A Class of Ostrowski Type Bilateral Inequalities
下载PDF
导出
摘要 针对二阶导函数有界的函数,用引入参数求最值的方法,得到一类Ostrowski型双边不等式. By using the method of introducing parameter to find the maximum,a class of Ostrowski type bilateral inequalities are obtained for functions whose second order derivatives are bounded.
作者 时统业 曾志红 SHI Tongye;ZENG Zhihong(PLA Naval Command College,Nanjing 211800,Jiangsu,China;Editorial Department of Journal,Guangdong University of Education,Guangzhou 510303,Guangdong,China)
出处 《惠州学院学报》 2020年第3期14-22,共9页 Journal of Huizhou University
关键词 Ostrowski型不等式 双边不等式 二阶可微函数 Ostrowski type inequality bilateral inequality twice differentiable function
  • 相关文献

参考文献1

二级参考文献11

  • 1Dragomir S S,Agarwal R P,Cerone P.On Simpson′s inequality and applications[J].J.of Inequal.Appl.,2000,5(6):533-579.
  • 2Ostrowski A.ber die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert[J].Comment.Math.Helv.,1938,10(1):226-227.
  • 3Ujevi'c N.Sharp inequalities of Simpson type and Ostrowski type[J].Comput.Math.Appl.,2004,48(1):145-151.
  • 4Liu Z.Note on a paper by N.Ujevi'c[J].Applied Mathematics Letters,2007,20(6):659-663.
  • 5Shi Y X,Liu Z.Some sharp Simpson type inequalities and applications[J].Applied Mathematics E-Notes,2009,9(7):205-215.
  • 6Tseng K L,Yang G S,Dragomir S S.On weighted Simpson type inequalities and applications[J].J.Math Inequal.,2007,1(1):13-22.
  • 7Peˇcari'c J,Tseng K L.New weighted Simpson type inequalities and their applications[J].J.Math Inequal.,2007,1(3):321-337.
  • 8Tseng K L,Hwang S R,Dragomir S S.Generalizations of weighted Ostrowski type inequalities for mapping of bounded variation and their applications[J].Computers and Mathematics with Applications,2008,55(8):1785-1793.
  • 9Tseng K L,Hwang S R,Yang G S,etal.Weighted Ostrowski integral inequality for mappings of bounded variation[J].Taiwan Residents Journal of Mathematics,2011,15(2):573-585.
  • 10Alomari M W.A companion of Dragomir′s generalization of Ostrowski′s inequality and applications in numerical integration[J].RGMIA Res.Rep.Coll.,2011(14),Article 50.

共引文献2

同被引文献10

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部