期刊文献+

涡轮叶片内部具有扰流肋和导流片的多通道冷却流动与传热特性 被引量:3

Flow and Heat Transfer Characteristics in Multi-pass Channel Cooling Structure With Ribs and Turning Vanes of Turbine Blades
原文传递
导出
摘要 对一种涡轮叶片内部具有扰流肋和导流片的多通道冷却结构的流动与传热特性进行了实验和数值计算研究。通过稳态实验得到三通道各流程的平均传热性能和通道的压力损失特性,通过瞬态液晶实验得到各流程传热分布,通过数值计算得到三通道均带肋情况下的详细传热分布。研究表明:导流片的引入降低了三个流程的平均传热性能,最高达15%左右,但也改善了三个流程以及转折段的传热均匀性,并显著降低了整个冷却通道的压力损失,最高可达到40%。 The flow and heat transfer characteristics in the multi-pass channel cooling structure with ribs and turning vanes were studied experimentally and numerically.Steady experiments were conducted to obtain the average heat transfer enhancement and the pressure loss characteristics.The Nusselt number distribution in the channels was obtained from transient liquid crystal experiments.Detailed heat transfer information was investigated by numerical calculations.The results showed that turning vanes could decrease the average heat transfer performance of the channel,but they could improve the heterogeneity of heat transfer distribution.The pressure loss of the entire cooling channel could also be remarkably reduced.
作者 郭仲秋 李彦霖 饶宇 GUO Zhong-Qiu;LI Yan-Lin;RAO Yu(Institution of Turbomachinery,School of Mechanical and Power Engincering,Shanghai Jiao Tong University,Shanghai200240,China)
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2020年第9期2225-2232,共8页 Journal of Engineering Thermophysics
基金 国家自然科学基金项目(No.51676119,No.11972230) 国家重大科技专项(No.2017-Ⅲ-0009-0035) 中船重工热能动力技术重点实验室开放基金重点资助项目(No.TPL2017BA002)
关键词 涡轮叶片 多通道扰流肋冷却 传热 压力损失 导流片 turbine blade multi-pass channel cooling with ribs heat transfer pressure loss turning vane
  • 相关文献

参考文献1

二级参考文献11

  • 1Han J C, Dutta S, Ekkad S. Gas turbine heat trans- fer and cooling technology[M]. England.. Taylor and Francis, 2001.
  • 2Rao Y, Zang S S. Flow and heat transfer characteris- tics in latticework cooling channels with dimple vortex generators[J]. ASME J Heat Transfer, 2014, 136 (2): 021017-0210110.
  • 3Chyu M K, Yu Y, Ding H, et al. Concavity en- hanced heat transfer in an internal cooling passage[C] //International Gas Turbine and Aeroengine Congress and Exhibition. USA: ASME, 1997: V003T09A080- 87.
  • 4Burgess N K, Ligrani P M. Effects of dimple depth on channel Nusselt numbers and friction factors[J]. ASME Journal Heat Transfer, 2005, 127(8).. 839- 847.
  • 5Ligrani P M, Harrison J L, Mahmood G I, et al. Flow structure due to dimple depression on a channel surface[J]. Physics Fluids, 2001, 13 (11) : 3442- 3451.
  • 6Johann T, Nikolai K, Valery Z, et al. Flow struc- tures and heat transfer on dimples in a staggered ar- rangement[J]. International Journal of Heat and Fluid Flow, 2012, 35 (1): 168-175.
  • 7Kim H M, Moon M A, Kim K Y. Multi-objective optimization of a cooling channel with staggered ellip- tic dimples[J]. Energy, 2011, 36 (5): 3419-3428.
  • 8Bunker R S, Donnellan K F. Heat transfer and fric- tion factors for flows inside circular tubes with con- cavity surfaces[J]. ASME Journal of Turbomachin- ery, 200, 125 (4): 665-672.
  • 9Rao Y, Wan C, Zang S. An experimental and numer- ical study of the flow and heat transfer in channels with pin fin-dimple combined arrays of different con- figurations[J]. ASME J Heat Transfer, 2012, 134 (12) : 121901.
  • 10Gee D L, Webb R L. Forced convection heat transfer in helically rib-roughened tubes [J]. International Journal of Heat Mass Transfer, 1980, 23 (8): 1127- 1136.

共引文献1

同被引文献51

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部