摘要
In this study,a novel hydrometallurgical process consisting of hydrochloric acid three-stage countercurrent leaching and solvent extraction was proposed to recover rare earth oxide(REO)from the rare earth polishing powder waste(REPPW).The effects of HCl concentration,liquid-solid ratio(L/S ratio),temperature and time on the leaching yields of rare earths(in REO)and aluminum(in Al2O3)were studied.The result shows that the leaching yields of REO and Al2O3 are 90.96%and 43.89%respectively under the optimum leaching parameters of HCl concentration=8.00 mol/L,L/S ratio=4 mL/g,leaching temperature=353 K and leaching time=180 min.Meanwhile,the leaching kinetics of REO and Al2O3 were investigated in this study.The leaching behaviors of REO and Al2O3 follow a shrinking sphere/core model and the general leaching process is controlled by the surface chemical reaction.The leaching activation energies of REO and Al2O3 are 9.86 and 13.68 kJ/mol,respectively.The leaching yield of each substance in three-stage countercurrent leaching is improved substantially compared with single-stage leaching,with a change from 90.96%to 95.38%for REO and from 43.89%to 46.22%for Al2O3,respectively.Especially,the total concentration of REO in three-stage countercurrent leaching solution is greatly increased to above 300 g/L,and the acidity of which is decreased to ca.pH=2,which is conducive to subsequent solvent extraction directly.High purity REO(99.92%)is obtained by solvent extraction separation,oxalate precipitation and calcination.The total recovery yield of REO is 85.13%.
基金
Project supported by National High-tech Research and Development Program(2017AA031002)。