期刊文献+

基于深度学习的乳腺癌分子亚型分类研究 被引量:1

Classification of Breast Cancer Molecular Subtypes Based on Deep Learning
下载PDF
导出
摘要 乳腺癌亚型的分类对乳腺癌的诊断和预后起着关键性的作用。针对目前还缺乏识别乳腺癌病理图像的深度学习模型,提出一种基于改进的深度卷积神经网络的乳腺癌病理图像识别模型。通过构建小尺寸病理图像数据集,训练深度卷积神经网络,达到对乳腺癌分子亚型进行智能识别的目的。将该模型与其他经典的深度学习模型进行对比,在乳腺癌分子亚型的分类工作上,该模型有更加好的识别性能。 The classification of breast cancer subtypes plays a key role in the diagnosis and prognosis of breast cancer.In view of the lack of deep learning model for breast cancer pathological image recognition,an improved deep convolution neural network model for breast cancer path⁃ological image recognition is proposed.By constructing small-scale pathological image data set and training deep convolution neural net⁃work,the purpose of intelligent recognition of breast cancer molecular subtypes is achieved.Compared with other classical deep learning models,this model has better recognition performance in the classification of breast cancer molecular subtypes.
作者 黄军豪 廖天驰 HUANG Jun-hao;LIAO Tian-chi(College of Information Engineering,Sichuan Agricultural University,Ya'an 625014;College of Science,Sichuan Agricultural University,Ya'an 625014)
出处 《现代计算机》 2020年第22期3-8,共6页 Modern Computer
基金 四川农业大学创新训练计划项目(No.201910626061)。
关键词 乳腺癌亚型 分类 卷积神经网络 深度学习 Timer Breast Cancer Subtypes Classification Convolutional Neural Network Deep Learning
  • 相关文献

参考文献5

二级参考文献41

  • 1石平,雷增杰,蓝宗富,朱世杰.如何快速有效地获取网上病理学图像资源[J].西北医学教育,2007,15(2):219-221. 被引量:4
  • 2BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 3BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 4HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 5BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 6LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 7VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.
  • 8VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408.
  • 9YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288.
  • 10POON H, DOMINGOS P. Sum-product networks:a new deep architec- ture[ C ]//Proc of IEEE Intemational Conference on Computer Vi- sion. 2011:689-690.

共引文献3056

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部