期刊文献+

范畴中morphic对象的推广

Promotion of Quasi-mophic Objects in Some Categories
下载PDF
导出
摘要 为了推广范畴中的morphic对象,通过引入范畴中的拟-morphic对象,给出了拟-morphic对象的一些等价刻画,并讨论了拟-morphic元与正则元的关系,推广其在p-exact范畴Abelian范畴中的若干性质:设A为p-exact范畴中的拟-morphic对象,则A的所有子对象均同构于A的一个像当且仅当A的所有像均同构于A的所有子对象;设C和D均为Abelian范畴,F∶C→D为完全忠实正合函子,且A∈Ob C,则A为拟-morphic的当且仅当F(A)也为拟-morphic的。进一步说明了范畴中的拟-morphic对象为morphic对象的真正推广。 By introducing the quasi-morphic objects in the category, some equivalent characterizations of the quasi-morphic objects are given, and the relationship between the quasi-morphic element and the regular elem ent is discussed, some properties of quasi-morphic objects in the p-exact and Abelian category are promoted. It is proved that let A be a quasi-morphic object in the p-exact category, then all images of A are isomorphic to an image of A if and only if all images of A are isomorphic to all sub-objects of A;let C and D be Abelian categories, F : C → D is a completely faithful exact functor, and A∈Ob C, then A is quasi-morphic if and only if F(A) is also quasi-morphic. It further explains that the quasi-morphic objects in the category are the real promotion of morphic objects.
作者 陆二伟 储茂权 姜翠翠 LU Er-weil;CHU Mao-quan;JIANG Cui-cui(Dingyuan No.3 Middle School,Chuzhou 233200,China;School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241003,China)
出处 《南通职业大学学报》 2020年第2期60-65,共6页 Journal of Nantong Vocational University
基金 国家自然科学基金资助项目(11401009)。
关键词 范畴 拟-morphic 完全忠实正合函子 category quasi-morphic faithful and full exact functor
  • 相关文献

参考文献5

二级参考文献37

  • 1李珊珊.P-平坦模,P-内射模和某些环[J].西南民族大学学报(自然科学版),2007,33(1):26-30. 被引量:7
  • 2凌灯荣,夏徐林,戴泽俭.G-morphic环的一些结果[J].安徽师范大学学报(自然科学版),2005,28(4):398-400. 被引量:14
  • 3颜晓光,储茂权,丁学智.G-morphic模[J].安徽师范大学学报(自然科学版),2006,29(5):426-428. 被引量:9
  • 4NICHOLSON M K, SANCHEZ Campos E. Rings with the dual of the isomorphism theorem[J]. J Algebra, 2004,271:391 -406.
  • 5NICHOLSON W K, SANCHEZ Campos E. Quasi rnorphic rings[J]. J Algebra and Application,2007,6:289-299.
  • 6NICHOLSON W K, SANCHEZ Carnpos E. Morphic modules[J]. Comm Algebra, 2005,33:2629- 2647.
  • 7ZELMANOWITZJ. Regular modules[J]. Trans AMS, 1972,163:341-355.
  • 8NICHOLSON W K E,Sánchez Campos.Rings with the dual of the isomorphism theorem[J].JAlgebra,2004,271:391-406.
  • 9AZUMAYA G.On generalized semi-primary rings and krull-Remak-Schmidt's theorem[J].Japan J Math,1960,19:525-547.
  • 10ZELMANOWITZ J.Regular modules[J].Trans A M S,1972,163:341 -355.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部